Fusion QbD® Software System

Fusion Product Development

QbD Software for

Formulation & Process Development

Fusion Product Development

Quality by Design on a Plate!

If you are wondering where to start when implementing Quality by Design in your organization, Fusion Product Development (**FPD**) is the answer you've been looking for. With automated experimental design selection, validated data exchange, sophisticated data analysis tools, and comprehensive reporting, FPD is the perfect place to start your QbD journey.

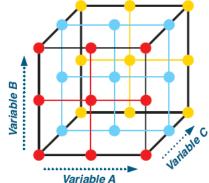
Key Benefits

- Translates QbD Guidances into Usable Tools
- Quantifies and Manages Risk
- Supports 21 CFR p11 Compliance
- Designed for Scientists
 (although statisticians are welcome!)

Example Applications

- Formulations
- Tableting / Tablet Coating
- Synthetic Chemistry
- Process or Device Development
- Manufacturing

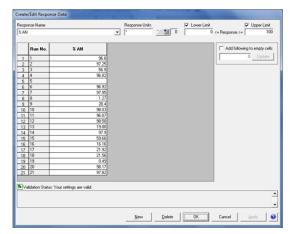
Systematic, logical, secure and compliant, FPD is perfect for all your development activities, from defining the "Experimental Region" through to reporting the "Operating Space".


The Experimental Region

Your journey begins here. **FPD** allows you to define multiple variables (potential Critical Process Parameters) and the ranges over which you wish to study them. It is these that will ultimately define your Knowledge Space.

One key benefit of **FPD** is that you do not need to have a statistics degree to use it! Based on the variable types entered in the Experimental Design template, **FPD** automatically selects the most efficient design suitable for modeling your data, including the higher order models required to visualize complex interaction effects usually responsible for the lack of Robustness.

Experimental Design

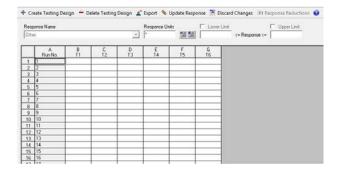

Design of Experiments (DOE) best practices are always adhered to, ensuring that the appropriate number of repeats, center points, and degrees of freedom are used. Designs (the list of experiments to be run) can be exported in a variety of file formats, including MS Excel, Comma or Tab-delimited files, HTML, or XML.

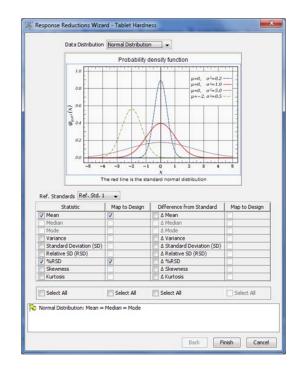
In addition, your departmental statistician can build templates using the "user Interactive" design mode. This enables full control over the choice of design to use and all associated design structure settings. Available design types include: Full and Fractional Factorial, Plackett-Burman, Box-Behnken, Central Composite, Star, Mixed Level, and Model-Robust Algorithm (Letter Optimality) designs.

Data Management and Processing

Any study is likely to require data from a range of measurement systems to determine the necessary Critical Quality Attribute results. A tablet study for example can generate "basic" Hardness data as well as "complex" Dissolution data. **FPD** supports all these types of data.

Direct Data Entry

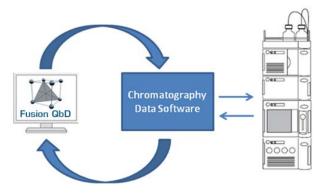

You can directly enter responses consisting of only one measurement per run (no test repeats) as analysis-ready data sets.


For each response you can also enter any limits associated with the test measurement – for example, % Released data for which the measurement cannot exceed 100%. FPD will automatically accommodate this critical feature of the response data in its automated data analysis and modeling.

Testing Plans

Create Testing Plans for response data which consists of multiple test repeats per experiment run (test replicates).

FPD will automatically translate your test repeat data into any statistical result you want to analyze, such as Mean, Variance, Std. Dev., % RSD, etc. And **FPD** can handle non-normally distributed test data.



Chromatography Interfaces

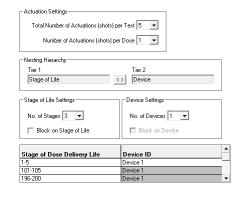
FPD automatically exchanges testing plans and chromatogram results with Chromatography Data Software via validated and fully audited processes.

FPD both builds the sequences/sample sets to be run, and extracts the required peak result data to populate the target "Testing Plan". This is a key feature ensuring quality, as transcription error is a common source of bad data that results in poor models.

Time Series Toolset

With this toolset you can create Testing Plans for "complex" time series profile data such as are obtained from dissolution testing and synthesis reaction testing.

Time Series Toolset can automatically:


- handle test repeat data at each testing time point
- compute response profiles
- compute f1 & f2 curve fit metrics
- run guidance specified f1 & f2 data quality checks
- compute sensitive Weibull curve fit metrics
- compute additional profile response metrics such as the mean response at a given test time point, or the time point associated with the given test result
- map all computed responses to the experimental design for automated data analysis

Inhaler Testing Toolset

With this toolset you can create Testing Plans for respiratory drug and device testing results data such as are obtained from ACI and NGI cascade impactor testing.

The Inhaler Testing Toolset can automatically create Testing Plans for:

- USP Apparatus 1-6 and Ph.Eur. 2.9.18 Apparatus C, D, E.
- any combination of device by stage of dose delivery life

Y-Mean at X = ¥ 60

X at Y-Mean = 75

Selected Target Profile Option Reference Standard

andard Ref. Std. 1 🔻 🕝 Graph 🦳 Table

Profile Similarity Metrics

The settings are valid

√ f1 (Difference Factor)

▼ f2 (Similarity Factor)

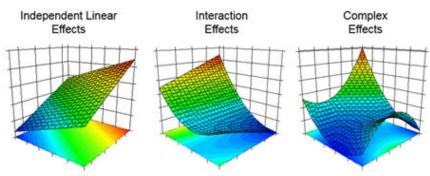
Connect-the-Dots Plot

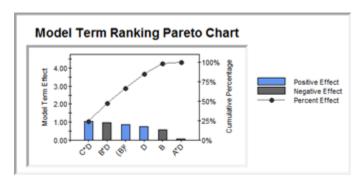
Chart Settings

Map to Design

Finish Cancel

The Inhaler Testing Toolset can also automatically:

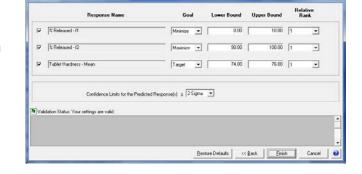

- compute apparatus stage and group averages, Material Balance, Mass Balance, Metered Dose, Emitted Dose, Actuator/Device Retention, Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Mass Median Aerodynamic Diameter (MMAD), and Geometric Standard Deviation (GSD)
- map all computed responses to the experimental design for automated data analysis


Knowledge Space

With your rationalized experimental data mapped to the design, the data analysis can begin. With a click of a button

FPD will perform your multi-variant analysis and build the empirical models describing the relationships between your potential Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs). These are displayed as readily interpretable Response Surfaces,

contour plots and effects plots ensuring you acquire "formulation and process understanding".



Pareto Ranking charts allow you to see which study variables should be treated as Critical Process Parameters.

Analysis Summary and Detail Reports define the quality of your experimental data, allowing you to have confidence in the models generated.

Best Overall Answer

With your Knowledge Space established, FPD's powerful Numerical Best Answer Search tool allows you to search for the conditions that meet all your required Critical Quality Attribute goals. Results are produced and displayed in concise tabular and graphical report formats.

Study Variable Data

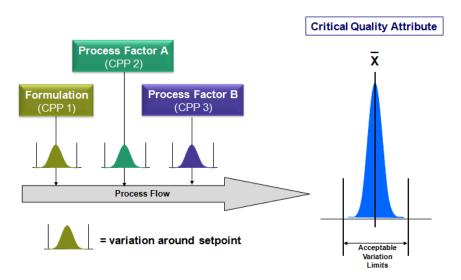
Study Variable	Optimizer Answer	
Atomizing Air Pressure	10.0	
Pattern Air Pressure	55.0	
Spray Rate	40.0	
Gun-to-Bed Distance	8.9	

Numerical Best Answer Search reporting displays the "Best Result" level setting of each experiment variable, and also reports the level settings of all key factors maintained constant for the experiment.

Predicted Response Data

Response		Optimizer Answer Predicted Response	_	+2 Sigma Confidence Limit
% Released - f1	Minimize	0.6185	0.2289	1.4887
% Released - f2	Maximize	95.2426	92.7147	97.7704
Tablet Hardness - Mean	75.0	74.8363	74.6912	74.9815

Desirability Target = 1.0000 Desirability Result = 0.7439 Numerical Best Answer Search reporting also includes the model-predicted result for each included response (CQA), along with the prediction confidence interval limits, and the "Overall Desirability" of the results relative to all your goals.


Quantification of Risk — Formulation & Process Robustness

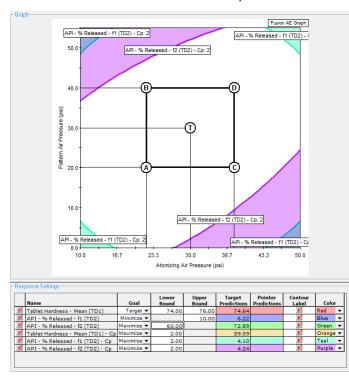
Robustness

"Ability of a process to tolerate variability of materials and changes of the process and equipment without negative impact on quality."

Fusion Pro's patented Robustness Simulator™ technology (U.S. Patent No. 7,606,685 B2) allows you to quantify risk. Enter expected variation in your Critical Process Parameters (CPPs) and allowable variation limits for your Critical Quality Attributes (CQAs).

Fusion Pro will automatically compute and model Robustness metrics (Process Capability metrics – e.g. C_p, C_{pK}), enabling you to characterize Robustness and incorporate that characterization into your Knowledge Space and Design Space.

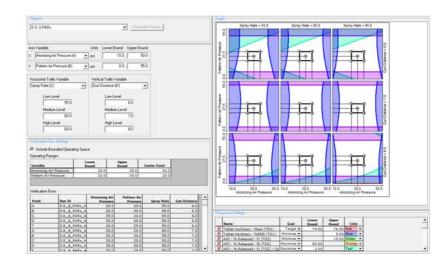
Design Space


"The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide

assurance of quality."

Proven Acceptable Ranges (PARs)

"A characterized range of a process parameter for which operation within this range, while keeping other parameters constant, will result in producing a material meeting relevant quality criteria."


Visualization feature assigns a color to each response, and then uses the color to shade the region of unacceptable performance for the response. The **UN-shaded** region thus represents the region of acceptable performance for the response. As many responses as desired can be included in a graph, so that the un-shaded region represents the proposed Design Space for all included responses.

Visualize and Report Formulation/Process Design Space and Operating Space

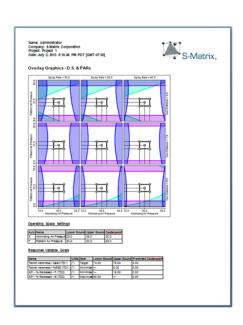
Color-coded response maps define the QbD Knowledge and Design Spaces. Users can predict and display best and most robust conditions.

FPD enables you to scribe the Quality-by-Design (QbD) "operating space" – the specified optimal conditions and the control limits of the critical parameters being studied – on the Design Space graphs. The specified conditions and limits which define the operating space are automatically added to the output reports.

Scalable From Walk-up System to Global Enterprise Solution

Fusion Pro Simple, walk-up-and-use system without the Regulatory Compliance overhead

- Workstation (Standalone) Version
- Network Version Available


Fusion Product Development

- Full implementation at the workstation level
- Full Part 11 Compliance Support / Workflow Management System
- Data Exchange with Chromatography Data Software
- Scalable from Small to Large Networks Certified Citrix Ready)

Fusion Product Development — Science at its best!

- walks the scientist through the QbD maze
- ensures QbD "best practices" are followed
- automates design selection, data transfer and analysis, optimization, and reporting
- outputs reports in a variety of file formats, including MS Word, HTML, and PDF
- scales from a single PC to corporate networks, supporting VMware and Citrix environments
- designed for cGXP and 21 CFR Part 11 environments

S-Matrix Software Products and Support

S-Matrix Corporation develops advanced Design of Experiment based-software that automates R&D experimental work according to Quality-by-Design principles and methodologies. S-Matrix's Fusion QbD platform automates and redefines experimentation in Analytical R&D, Chemical and Process R&D, Formulation, and Product R&D.

Fusion QbD Software System Product Suite

■ Fusion LC Method Development

Fully automated QbD experimenting on your LC system, integrated DOE, automated robustness simulation & chromatography data modeling. Chemistry screening without the need for peak tracking.

■ Fusion Analytical Method Validation

Meet regulatory guidelines with a best-practices approach toward LC method validation with comprehensive reporting. Also supports formal validation of Non-LC methods (e.g. GC, CE, Q-NMR).

■ Fusion Inhaler Testing

Create sampling plans, export and import data from your CDS via validated data exchange, calculate particle size distribution results, and generate reports according to USP 601, Ph.Eur. 2.9.18, and ISO 27427.

■ Fusion Product Development

The perfect QbD software for formulation & product development – automated experimental design selection, sophisticated analysis tools, including automated modeling and simulation, comprehensive reporting, with a full 21 CFR 11 compliance toolset.

Sales and Support

Sales: Tel: 800-336-8428 (Outside the USA: 707-441-0406). Email: Sales@smatrix.com Customer Support: Tel: 707-441-0407. Fax: 707-441-0410. Email: Support@smatrix.com

On-site and Web Training

S-Matrix offers on-site training programs for installed systems. Training includes experiment strategies, experimental design (DOE), data analysis, graphical visualization and ranking of effects, numerical and graphical optimization, and QbD Reporting.

S-Matrix also offers interactive web training which covers software features and operation, along with general principles of DOE and QbD. Web training programs can be tailored to suit your individual focus and information requirements.

To arrange an on-site or web-based training program, call 707-441-0406.

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA www.smatrix.com

All trademarks are the property of their respective owners