Fusion Pro_® – QbD-aligned DOE Software

- Statistical Experimental Design
- Analysis & Modeling
- Robustness Simulation
- Numerical & Graphical Optimization
- 2D, 3D, & 4D Visualization Graphics
- 100% aligned with Quality by Design Principles and Guidelines

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA Phone: 707-441-0404 URL: <u>www.smatrix.com</u>

Initial DOE Software Development and Verification

Software development began in the mid-1990s in consultation with recognized leaders in the field of Statistical Design of Experiments methodology.

DOE Verification by Douglas C. Montgomery, Ph.D.

Dr. Montgomery is a well known authority in the field of Industrial Statistics with a special emphasis on Design of Experiments. He is the author of the best selling book *Design and Analysis of Experiments* (John Wiley and Sons, Inc.). Dr. Montgomery has consulted in the development and verification of all major DOE features, including:

- Wizard guided experiment design selection
- Wizard guided data analysis
- Automated regression modeling capabilities

DOE Verification by John A. Cornell, Ph.D.

Dr. Cornell is considered the foremost authority on mixture experiment design. He is the author of the best selling book *Experiments With Mixtures* (John Wiley and Sons, Inc.). Dr. Cornell worked closely with S-Matrix on development of our mixture design and analysis capabilities. Among the specific capabilities that he has guided and verified are:

- Unconstrained and Singly-constrained Mixture Designs
- Unconstrained and Singly-constrained Mixture-Process Designs
- Mixture-Process Designs with Multicomponent Constraints
- Analysis of Mixture and Mixture-Process Experiment Data

Quality by Design (QbD)

"A systematic approach to development that begins with predefined objectives and **emphasizes product and process understanding** and process control, based on sound science and quality risk management.."

Formal Experimental Design

"A structured, organized method for **determining the relationship between factors** affecting a process and the output of that process. Also known as "Design of Experiments."

QbD Design Space

"The **multidimensional combination and interaction** of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality."

QbD Design Space

QbD Design Space - "The **multidimensional combination and interaction** of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality."

Curves defining the acceptable performing regions are generated by equations (models)

IMPORTANT –

interactions also induce curvature in response surfaces

The design space is the un-shaded overlapping region of acceptable performance

Figure 2a: Contour plot of dissolution as a function of Parameters 1 and 2.

Figure 2b: Contour plot of friability as a function of Parameters 1 and 2.

Figure 2c: Proposed design space, comprised of the overlap region of ranges for friability and or dissolution. [ICH Q8(R2) - Page 23] 5

Fusion Pro – Critically Differentiating Features Which Support QbD-aligned R&D

- 1. Automated Design of Experiments (DOE)
- 2. Response Data Handler
- 3. Automated Analysis and Modeling
- 4. Fully Integrated Monte Carlo Robustness Simulation
- 5. Best Answer Search Wizard
- 6. Design and Operating Space Characterization

Feature 1 – Automated DOE

Integrated DOE with Automated and User-interactive Design Modes

• Automated Mode – selects the most efficient design for you.

Preferences
Design Wizard Mode
Automated
C User Interactive
Analysis Wizard Mode
 Automated
C User Interactive
OK Cancel

Automated DOE

Integrated DOE with Automated and User-interactive Design Modes

• User-interactive Mode – you select and tailor the design.

Feature 2 – Response Data Handler (RDH)

Handles Response Data Simply and Easily

- Single test result per run.
- Descriptive Statistics multiple test results per run.
- Time Series results at multiple time points per run.

Single Test Result Per Run

16.16

21.92

21.56

0.49

98.17

97.82

16 16

17 17

18 18

19 19

20 20

21 21

Validation Status: Your settings are valid.

Descriptive Statistics – multiple test results per run

🔯 Fusion Product Development - Tra	aining Example 1 - Tablet Coater Optimization - Analysis.smae
<u>File E</u> dit <u>M</u> odule <u>T</u> ools <u>W</u> indow	Telb
🗅 🖻 🖻 🖬 🖣 🗿 📳 🕂	Create Testing Design 🍃 Delete Testing Design 🚅 Export 📲 Create Response 🚿 Edit Response 🏾 🖷 Delete Response 👫 Response Reductions 🥝
Design of Experiments • Create a Design • Design Reports Data Entry / Analysis	Assponse Wanne Response Units Create Response Upper Limit ther *
T.	Create Testing Design
Γ	Testing Design Name Testing Design Type
	Testing Design (TD 1) Descriptive Statistics -
	Reference Standards Replication Scheme
	Reference Standard Runs I No. of Preparation Repeats I
	☑ Apply Replication Scheme No. of Injection Repeats per Preparation 6 ♀
	The settings are valid.
	Back Finish Cancel
🗣 S-Matrix 🖁 💆	

Descriptive Statistics – multiple test results per run

S-Matrix_®

🙀 Fusion Product Development	- Training Example 1	- Table	t Coater Optimiz	ation - Analysis.	smae								
<u>File Edit M</u> odule <u>T</u> ools <u>W</u> in	dow <u>H</u> elp												
D 🖻 🖻 🖫 🖡 🎒 🔳	+ Create Testing De	esign 🔹	 Delete Testing) Design 🛛 🖻 Exp	ort 📑 Creat	e Response	Edit Respon	se 🗮 Delete	Response 📲 R	esponse Reductions 🔞			
Design of Experiments	Response Name			Re	sponse Upits	Create F	Create Response						
 Design Reports 	Other			×		<= Response <=							
Data Entry / Analysis													
	1												
		Resp	onse Name			F	Response Uni	ts	Lower Lin				
		Tabl	et Hardness			-	×	0 +.0					
		·											
			Α	В	С	D	E	F	G				
			Run No.	T1	T2	T3	T4	T5	T6				
		1	1	74.06	76.54	75.02	73.74	75.84	75.87				
		2	2	75.12	75.65	75.43	74.33	74.86	75.03				
		3	3	78.21	76.77	77.71	77.06	77.22	75.94				
		4	4	77.40	77.48	74.95	76.61	74.78	76.17				
		5	5	76.03	76.49	75.89	74.86	75.49	75.14				
		6	6	75.61	75.10	75.82	76.74	75.74	75.55				
		7	7	74.18	76.21	73.48	73.66	73.34	74.56				
		8	8	73.30	76.92	76.36	77.03	76.29	/5.55				
		9	9	75.01	75.46	75.75	75.00	75.13	74.01				
		10	10	76.14	74.79	76.62	70.92	74.71	74.94				
		11	10	74.04	73.62	74.68	75.80	76.20	74.73				
		12	12	73.26	74.14	74.32	73.73	74.07	74.14				
		14	14	73.62	75.44	70.13	79.00	74.00	74.00				
		14	15	73.03	75.07	73.64	75.00	70.40	77.58				
		16	16	77.50	79.23	76.42	76.74	75.88	77 74				
•		10		1 11.00	70.20	10.42	10.14	10.00	11.17				

Descriptive Statistics - multiple test results per run

Can automatically:

- handle test repeat data
- handle non-normally distributed data
 - Log-normal
 - Exponential
 - Gamma
 - Weibull
- compute descriptive statistics based responses
- compute differences of all statistics from a reference standard
- map all computed responses to the experimental design for analysis

Time Series – results at multiple time points per run

S-Matrix_®

🗊 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae		
<u>F</u> ile <u>E</u> dit <u>M</u> odule <u>T</u> ools <u>W</u> indow <u>H</u> eip		
🗅 📝 🔗 🔚 🎩 🎒 🗐 🕂 Create Testing Design 🛉 Delete Testing Design 🔮 Export 📲 Create Response 🚿 Edit Re	sponse 🗮	Delete Response 🧯 Import Responses 👫 Response Reductions 🥝
Design of Experiments Response Hame Response Units Image: Lower Limit • Create a Design • Design Reports * * * * * * •	<= Respor	□ Upper Limit
	D	
Create Testing Design)	Can automatically
Testing Design Name Testing Design Type Testing Design (TD3) Time Series		handle:
Reference Standards Replication Scheme		
Reference Standard Runs 1 👘 No. of Preparation Repeats 1		 Uniform of variable
Apply Replication Scheme No. of Injection Repeats per Preparation		testing protocols
Sampling Rate		51 51
O Uniform Variable Measurement Time Point (Minutes)		Multiple sample
No. or Measurements 0 0 per Indu 0 3 20.0 Total Time Period 8 Thours		preparation repeats
Start time at 0.0 Update		
		 Multiple test repeats
9 80.0 10 90.0		at each time point
11 100.0 12 110.0 13 120.0		at each time point
14 14 15 140.0		
16 150.0 +		 Internal test standard
		data
The settings are valid.		
Back Finish Cancel		
	U.	

Time Series – results at multiple time points per run

Can automatically:

- handle test repeat data
- compute average profiles
- compute f1 & f2 curve fit metrics
- compute sensitive Weibull curve fit metrics
- compute additional profile response metrics
- Map all computed responses to the experimental design for analysis

Feature 3 – Automated Analysis and Modeling

- 1. Statistical DOE runs information rich data set.
- 2. Automated modeling generates a highly predictive and diagnostic model for each critical performance characteristic studied.

Automated Analysis and Modeling

Automated Modeling Includes:

- Error Analysis
- Regression Analysis
- Transformation Analysis
- Outlier Analysis

Instant Analysis Reports Include:

- Model Sufficiency Summary
- Analysis Detail Reports
 - Error Analysis
 - Regression Analysis
 - Residuals Report and Graphs
 - Transformation Analysis
 - Coefficients Table and Model
 - Mean Effects Report and Plot

Regression Statistic	Computed Value	Scaled Value
R Square	0.9949	
ód), R. Sguare	0.9992	
Standard Error (+i-)	0.0698	
Error Stil, Dev. (4F)	0.1022	
Mar	2,8695	0.8949
Mar	0.0061	0.0014
MSR/MSE F-rado	706.6657	
MSR Significance Threshold	0.0109	0.0036
MELOF	0.0025	0.0006
M9-PE	0.0104	0.0056
MS-LoFIMS-PE F-rado	0.9994	
M9-LoF SinnReance Threshold	0.0478	0.0165

MSR Significance Threshold

Scaled Value is the 0.0500 probability value for anticical algorithmance. MSR is anticically algorithman when we this value. Nodeling Scale MSR value we Significance Threshold.

NS-LoF Significance Threshold

Scaled Value is the 0.0500 probability level for control of prificance. MS-LoF is contrologly algorithans when we this value. Modeling Scale MS-LoF value we Significance Threshold.

Feature 4 – Fully Integrated Robustness Simulation

Simultaneously optimize mean performance and robustness during development!

Robustness	Simulator			x	
Maximum E The ± 3 σ variable ar on transfe statisticly r	Expected Variation: value defines the "total" variation in the experiment round its defined setpoint that is expected to occur r and normal use of the method over time due to random error.	Maximum Expected Varial	Maximum Expected Variable Maximum Expected Variation (Control Lint Deta = ±30) UCL UCL UMPORTANT: Use manufacture's spece for the specific deta Link value or solid link spece for the spece for the spece for the spece for the spece for the spece for the spece for the spece for the spece for the spece for the spece for the spece for		
-Variable S	Settings				
Enabled	Experiment Variable	Units	Maximum Expected Variation (± 3 σ Value)		
V	Atomizing Air Pressure	psi	5.000		NOTE - the value
V	Pattern Air Pressure	psi	5.000		
V	Spray Rate	mg/min	2.000		defines the maximum
V	Gun Distance	inches	0.250		avpacted saturat
Se	elect All Select None Set Defaults				variation for the study factor.
The setting	js are valid.		Back Next Car	ncel	

Fully Integrated Robustness Simulation

<u>Simultaneously optimize mean performance</u> <u>and</u> <u>robustness</u> <u>during development!</u>

R	obus	tness Simulator				-		<u></u> 2	×	
C _p C _p C _{pk}	m k m	Use C _p when (a) the response has allowable amount of variation, and cases below applies to the response 1. The response goal is Maximi : responses are generally not n lower acceptance limit. 2. The response goal is Minimiz responses are generally not n upper acceptance limit. Note: the Tolerance Limit Delta (:	a defined max b (b) one of the se: ze, and the pre ear an absolut e, and the pre ear an absolut ±) value define	cimum e two edicted e dicted e e	Maximu TL -30 Critical	Tredicted Vertebon	Die Difference	From Mean Result for a Given CQA $\hat{c}_p = \frac{UTL - LTL}{6\hat{\sigma}}$ Maximum Allowable Difference (Distance From Mean) IMPORTANT: Maximum Allowable Difference value defines the maximum tolerance (acceptance) limits on response variation.		
Res	ponse	e Settings	Robustness	Tolerance Limit		1	A	dditional Additional Error Amount	ŧ	
		Response Tablet Hardness - Mean (TD 1) API - % Released - f1 (TD2) API - % Released - f2 (TD2)	Index Cr Cr Cr	Delta (±) 2.000 5.000 10.000			larget E	NOTE - the values define limits on res	e To e t po	plerance Limit Delta he maximum allowable ± nse variation.
	The s	Select All Select None	Set Defa	aults			E	ack Finish Cancel		

Fully Integrated Robustness Simulation

Process Capability - Quantified

Process Capability (C_p) – a direct, quantitative measure of process robustness used routinely in Statistical Process Control (SPC) applications. The classical SPC definition of "Inherent Process Capability" (C_p) is

$$C_{p} = \frac{UTL - LTL}{6\sigma \text{ variation}}$$

UTL and LTL = *Tolerance* Limits (tolerance width).

6 σ Variation = $\pm 3\sigma$ process output variation.

Traditional Goal ≥ 1.33

- based on setting the UTL and LTL at $\pm 4\sigma$ of process performance variation.

- Note: a 6-sigma process would have a $C_p = 2.00$ Matrix.

Process Capability: Example Response = f1 (curve fit metric)

$$c_{p} = \frac{6\sigma}{6\sigma} = 1.00$$

$\pm 3\sigma$ Variation = Tolerance Limit Interval

Process Capability: Example Response = f1 (curve fit metric)

$$c_p = \frac{8\sigma}{6\sigma} = 1.33$$

 $\pm 3\sigma$ Variation = 75% of Tolerance Limit Interval

Process Capability: Example Response = f1 (curve fit metric)

$$c_{p} = \frac{12\sigma}{6\sigma} = 2.00$$

 $\pm 3\sigma$ Variation = 50% of Tolerance Limit Interval

Fully Integrated Robustness Simulation

Simultaneously optimize mean performance and robustness during development!

With built in robustness metrics – no additional experiments are needed!

Fully Integrated Robustness Simulation

<u>Simultaneously optimize mean performance</u> and robustness <u>during development!</u>

With built in robustness metrics – no additional experiments are needed!

Feature 5 – Best Answer Search Wizard

Execut	e Search - Response Goals										
Rep	bort Name umerical Search 2	Model Prediction Error C.I. for Report: ± 2 Sigma 💌									
	Response Name	Goal		Lower Bound	Uppe	r Bound	Relative Bound Rank				
	Tablet Hardness - Mean (TD1)	Target	•	74.00		76.00	1	•			
•	API - % Released - f1 (TD2)	Minimize	•	0.00		10.00	1	•			
•	API - % Released - f2 (TD2)	Maximize	•	60.00		100.00	1	•			
	Tablet Hardness - Mean (TD1) - Cp	Maximize	•	1.33		2.00	1	•			
	API - % Released - f1 (TD2) - Cp	Maximize	•	1.33		2.00	1	•			
~	API - % Released - f2 (TD2) - Cp	Maximize	•	1.33		2.00	1	•			
⊡ Va	lidation Status: Your settings are valid.										
									_		
									•		
		Modify Search Region	<u>R</u> est	ore Defaults	<< <u>B</u> ack	<u> </u>	ancel	0			

Best Answer Search Wizard

Name: Administrator Company: S-Matrix Project: Project 1 Date: November 4, 2012 7:52:37 PM PST [GMT-08:00]

Numerical Search Results - Experiment 1

Answer #1

Variable Settings

Variable	Level Setting
Atomizing Air Pressure	20.8
Pattern Air Pressure	55.0
Spray Rate	59.2
Gun Distance	8.8

Predicted Results

Response	Goal	Predicted Result	Desirability	-2 Sigma Conf. Limit	+2 Sigma Conf. Limit					
Tablet Hardness - Mean (TD1)	75.0	74.99	0.9887	74.85	75.13					
Tablet Hardness - %RSD (TD1)	Minimize	1.64	0.6718	1.55	1.74					
API - % Released - f1 (TD2)	Minimize	1.48	0.9016	0.71	2.51					
API - % Released - f2 (TD2)	Maximize	87.23	0.7445	84.86	89.59					
Cumulative Desirability Target = 1.0000 Cumulative Desirability Result = 0.8172										

🖻 S-Matrix.

Feature 6 – Design and Operating Space Characterization

S-Matrix_®

29

Design Space –

joint region of acceptable mean performance *and robustness*.

Joint safe operating ranges of critical study parameters

- Acceptable Mean Performance all performance characteriastics
- Acceptable Robustness all performance characteriastics

-Reports						n 🗏 Gra	raph									
0 S . S B 60	0.60.70		-										Fu	sion AE Graph]	
10.5 5.11. 00.	, u.D. 7.0															
									50.0	API - S	% Released -	f2 (TD2) - Cp:	2			
Graph Settings	;								1							
		Lowe	r Upper	Pointer												
Name V Atomizing A	Air Dressure 💌	Units Bound	d Bound	Coordinate					40.0							
Y Pattern Air	Pressure V	psi	0.0 55	5.0				6								
Verification Ru	n Settings				· · · · · · · · · · · · · · · · · · ·	-		9 9	Tablet Harr	iness - %RSD	(TD1): 5	Tablet	Hardness - %	RSD (TD1): 5		
								Inss	30.0		-(B)	(D)				
Include Pro	oven Acceptable F	Ranges (PARs)						Ĕ			Υ.	- Y				
Operating Rang	ges							À۲			(D	- 1			
Variable		Lower Bound	Upper Bound	Ce	enter Point			E			4	لم ا				
Atomizing Air	r Pressure	25.0		35.0	30.0			Pat	20.0		Ŷ	Ψ	- 1			
Pattern Air Pr	ressure	20.0		30.0	25.0				ļ							
													1			
Verification Rur	ns			Show Veri	fication Run Labels				10.0							
		Atomizing A	ir Pattern Air										י			
Point	Run ID	Pressur	e Pressure	Spray Rate	Gun Distance					API - %	Released - 12	(TD2) - Cp: 2	-			
B	0.5 5.8. 6	50 25.	0 20.0	60.0	7.0				0.0	L, , _				۱.		
c	O.SS.R6	50 35.	0 20.0	60.0	7.0				10.0	16.7	23.3 3	0.0 36	.7 43.3	50.0		
D	0.SS.R6	50 35.	0 30.0	60.0	7.0						Atomizing Air	Pressure (ps	i)			
Т	0.SS.R6	5 q 30.	0 25.0	60.0	7.0											
						Be	esponse Settings-									
										1			T	Deinhau	Cartan	
							Name			Goal	Bound	Bound	Predictions	Predictions	Label	Lā
							Tablet Hardnes	ss - N	lean (TD1)	Target 🔻	74.00	76.00	74.70			Rec
							Tablet Hardnes	ss - 9	6RSD (TD1)	Minimize		5.00	2.90			Blu
							API - % Relea	ised -	f2 (TD2)	Minimize V	50.00	15.00	7.10			Or: T
						1	I API - 70 Kelea	iseu -	12 (102)	Turner t	50.00		70.71			

Tablet Coater Optimization Example

Tablet Coater Optimization Example

Final Report → Output file formats include Word and PDF

Conclusions

The Fusion Pro QbD-based Approach:

- ✓ Greatly accelerates successful R&D through:
 - Automation
 - Statistically valid experimentation
 - Novel data treatments
- ✓ Provides quantitative knowledge of all critical parameter effects
- ✓ Enables establishing Design Space for both:
 - Mean Performance (setpoint optimization)
 - Process Robustness (operating space)
- ✓ Required time for the work is dramatically reduced
- ✓ Success promotes further the use of QbD

Fusion Pro – QbD-aligned R&D Software

Case Study 1 –

Tablet Coating Process

Case Study 1 – Tablet Coating Process

The experiment was undertaken to optimize a tablet coating process for several critical tablet quality characteristics. The two which will be discussed in this case study are Hardness and Dissolution (% Released profile).

The four critical process parameters (CPPs) selected for study are entered into the Experiment Setup template shown below.

Process Variable Settings No. of Process Variables 4							
Name	Units		Туре		Lower Bound	Upper Bound	
Atomizing Air Pressure	psi	. .0 . .0	Continuous	-	10.0		50.0
State © Variable © Constant							
Name	Units		Туре		Lower Bound	Upper Bound	
Pattern Air Pressure	psi	. .0 . .0	Continuous	-	0.0		55.0
State © Variable C Constant							
Name	Units		Туре		Lower Bound	Upper Bound	
Spray Rate	gm/min		Continuous	•	40.0		125.0
State © Variable © Constant							
Name	Units		Туре		Lower Bound	Upper Bound	
Gun-to-Bed Distance	inches	. .0 . .0	Continuous	-	4.0		10.0
State © Variable © Constant							

Automated Experiment Design Generation

🐺 Fusion Product Development - Trai	ning Example 1 - Tablet Coater Optimization - Ro
<u>File Edit Activity T</u> ools <u>W</u> indow	<u>H</u> elp
🗅 🖻 🖻 🔛 🖏 👢 🎒 🗐 (🕼 Update Setup Da 🛛 🔀 Generate Design 🥝
Design of Experiments	Process Variable Settings
Create a Design v Design Reports	No. of Process Variables 4
Data Entry / Analysis	

One Click:

Software maps the experimental design to the study factors.

Generate Design – Statistical Efficiency

5 levels of Atomizing Air Pressure

5 levels of Pattern Air Pressure

5 levels of Spray Rate

5 levels of Gun-to-Bed Distance

 $5 \times 5 \times 5 \times 5 = 625$ possible combinations

Fusion Screening design = 25 runs (excluding replicates)

~ 25x efficiency.

Create Testing Design – Hardness Testing.

🗿 Fusion Product Development - Tra	aining Ex	kample 1 - T	ablet Coater Optimization - Robu	stness Optimization.smae					
<u>File Edit Activity Tools Window</u>	<u>H</u> elp								
D 🖻 🖻 🖫 🕲 💵 🎒 🔳	🥍 Edit	Run No. Lal	bels 📠 Matrix Master 🛛 🛓 Expo	t 🔚 Create/Edit Response 🛙	Data 🕂 Create 1	Testing Design 👔			
Design of Experiments - • Create a Design		Run No.	Atomizing Air Pressure	Pattern Air Pressure	Spray Rate	n-to-Bed Distance			
└─	1	1	30	55	82.5	7			
Data Entry / Analysis	2	2	30	27.5	82.5	10			
Data Entry Ota Analysis	4	4	10	0	40	10			
_									
1.AL	Create	Testing Des	ign			×			
			Testing Design Name	Testing De	esign Type				
			Hardness Testing	(TD3) Descriptiv	ve Statistics 👻				
			Course Charles Inc.	Destruction Channel					
		Re	terence Standards	Replication Scheme					
		Re	eference Standard Runs 1 🚔	No. of Preparation Repeats					
			Apply Deplication Scheme						
				No. of Injection Repeats pe	r Preparation				
	The se	ettings are va	lid.						
					Back	Finish Cancel			

S-Matrix_®

Testing Design Data Entry – Hardness Data

🕼 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae														
<u>File Edit M</u> odule <u>T</u> ools <u>)</u>	<u>N</u> indow	<u>H</u> elp												
🗅 🕞 😂 🖬 📕 🎒 🔳	- C	Create Testin	ng Design	- Delet	e Testing D	esign 🧕	Export	🕂 Create	Response	Edit Respo	nse 🗮 Delete	e Response	🕼 Response	Reductions 🕜
Design of Experiments	Bes	sponse Name	<u>.</u>				Besponse	Dus	Great	e Response			imit	
 Oreate a Design 		sponso ritane	·				x		t.ol	LOTIOI LIITIK	D			
└─ ● Design Reports	100	ner				-	ļ		.00	<	= Hesponse <=	I		
Data Entry / Analysis					<u> </u>									
									L,					
									/					
	+ Create	e Testing Desig	jn 🗕 Delete	e Testing De	esign 🚊 Exp	ort 🕂 Cr	eate Respons	e 🚿 Edit F	Response 📕	Delete Response	🧕 Import Respo	onses 👫 Re	sponse Reductions	5 🕜
	Respor	nse Name			B	esponse Uni	its	Lower L	.imit	🗖 Uppe	r Limit			
	Tablet	t Hardness			• ×		0 + .0		<= Res	ponse <=				
														_
		A Run No.	B T1	Ľ T2	D T3	E T4	⊦ T5	G TG	H Mean	 %Relative SD				
	1 1	1	75.17	73.58	76.52	74.24	77.53	74.03	75.18	2.07				
	2 2	2	74.00	74.91	75.54	76.06	75.56	74.36	75.07	1.05				
	3 3	3	63.26	97.04	70.56	91.25	80.56	60.20	77.15	19.48				
	4 4	5	73.72	74.44	76.03	78.30	73.75	77.34	75.65	2.87				
	6 6	5	57.40	64.80	66.89	97.75	81.26	86.48	75.76	20.14				
	7 7	7	73.53	75.25	74.77	74.55	74.38	72.97	74.24	1.13				
	88	3	73.31	75.80	75.49	77.99	77.21	75.65	75.91	2.13				
	9 9	3	75.57	72.96	76.27	74.75	75.00	73.22	74.63	1.75				
			73.94	76.16	75.98	78.49	73.00	75.54	75.52	2.53				
	12 1	12	72.03	74.20	75.11	70.04	75.56	74.20	74.02	1.77				
	13 1	13	73.51	74.50	74.31	73.47	77.01	73.47	74.38	1.84				
	14 1	14	86.94	84.70	58.27	94.76	68.53	62.12	75.89	19.63				
	15 1	15	78.06	74.09	73.21	77.15	75.86	74.20	75.43	2.54				
	16 1	16	85.36	82.40	98.92	75.92	61.19	59.71	77.25	19.45				
	17 1	17	76.01	75.93	75.75	72.73	74.17	78.67	75.54	2.65				
	10 1	19	70 90	52.77	72.72	30.73 74.29	74.38	50.08 76.60	74.68	2.99				
	20 2	20	73.84	76.88	72.62	75.97	73.90	75.42	74.77	2.00				
	21 2	21	78.80	72.94	74.89	73.38	75.43	73.14	74.76	2.97				
	22 2	22	72.80	74.50	72.19	74.54	77.43	77.40	74.81	2.97				
	23 2	23	75.02	79.38	74.41	74.23	74.75	74.77	75.43	2.59				
	24 2	24	74.06	88.17	58.73	76.27	70.29	80.55	74.68	13.30				
	25 2	25	/2.40	74.02	/5.39 E0.00	73.94	75.25	74.04	/4.70	2.19				
	26 2	20	83.95 57.36	74.06	53.33 67.39	82.35	69.36	74.64	74.70	11.64				
	21 4	-	51.30	10.21	07.50	30.40	05.00	00.33	10.04	10.42				

S-Matrix_®

Software automatically:

- handles test repeat data
- handles non-normally distributed data
 - Log-normal
 - Exponential
 - Gamma
 - Weibull
- computes descriptive statistics based responses
- computes differences of all statistics from a reference standard
- Maps all computed responses to the experimental design for analysis

Response Data Reductions – Hardness Data

	Run No.	Atomizing Air Pressure	Pattern Air Pressure	Spray Rate	Gun Distance	Tablet Hardness - Mean (TD1)	Tablet Hardness - %RSD (TD1)
1	1	30	55	82.5	7	75.18	1.47
2	2	30	27.5	82.5	10	75.07	0.61
3	3	50	0	125	10	77.15	1.01
4	4	10	0	40	10	76.23	1.53
5	5	10	55	125	10	75.65	0.80
6	6	10	55	40		75.76	0.71
7	7	30	27.5	82.5		74.24	1.44
8	8	30	0	82.5	7	75.91	1.82
9	9	50	55	40	10	74.63	1.66
10	10	50	0	40		75.52	1.07
11	11	30	27.5	82.5	7	74.52	1.29
12	12	10	55	40	10	74.62	0.97
13	13	10	0	125	-	74.38	0.76
14	14	50	55	40	4	75.89	1.71
15	15	10	0	40	4	75.43	2.35
16	16	10	0	125	10	77.25	1.54
17	17	50	55	125	10	75.54	0.89
18	18	50	27.5	82.5	7	74.68	1.34
19	19	50	0	40	10	76.06	1.42
20	20	30	27.5	82.5	7	74.77	1.61
21	21	10	55	125	4	74.76	0.91
22	22	50	55	125	-	74.81	1.52
23	23	10	0	40	-	75.43	0.77
24	24	10	27.5	82.5	7	74.68	1.02
25	25	30	27.5	82.5	7	74.70	0.93
26	26	30	27.5	40	7	74.70	1.15
27	27	10	55	40	-	75.94	1.52
28	28	50	0	125		74.39	1.69
29	29	50	0	40		75.46	1.43
30	30	30	27.5	125	7	74.59	1.58

Create Testing Design – Time Series (Dissolution) Testing.

🐺 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae	
<u>File Edit M</u> odule <u>I</u> ools <u>W</u> indow <u>H</u> eip	
🗅 📝 🖻 🖫 🎩 🕌 🔳 🕂 Create Testing Design 🔸 Delete Testing Design Export 👫 Create Response 🚿 Edit Res	sponse 🗯 Delete Response 🧯 Import Responses 💵 Response Reductions 🥝
Design of Experiments Response Hame Response Units ✓ Lower Limit • Create a Design * Design Reports * 100 ±00 0.0 Data Entry / Analysis • 00 ±00 0.0	<= Response <=
Create Testing Design	
Testing Design Name Testing Design Type Testing Design (TD3) Time Series	Software automatically handles:
Reference Standards Replication Scheme Reference Standard Runs 1 + Apply Replication Scheme No. of Preparation Repeats Sampling Rate	 Uniform or variable sampling plans
Uniform Variable Uniform No. of Measurements Frotal Time Period Weasurement Time Point (Minutes) A 0.0 A 0.0	 Multiple sample preparation repeats
Start time at 0.0 Update B 50.0 7 60.0 8 70.0 9 80.0 10 90.0 11 100.0 12 110.0 13 120.0 14 130.0	 Multiple test repeats at each time point
15 140.0 16 150.0	 Internal test standard data
Back Finish Cancel	

S-Matrix_®

Create Testing Design – Import Test Results From the CDS.

🗐 Fusio	😰 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae														
<u>F</u> ile <u>E</u> d	it <u>M</u> odule <u>T</u> ools <u>V</u>	<u>N</u> indow <u>H</u> e	lp												
	p 🛛 🖉 🖉	Creat	te Testina Des	sian 🗕 Dele	ete Testina De	sian 🖬 Ext	ort 📑 Creat	e Response	Edit Respon	se 🎹 Delete	Response 6	Import Respo	onses Mit Res	oonse Reductio	ns 🙆
Design	er un ser er er i		te resting bes	ign bei	cic resting be	Sign 📥 Ext			currespon	Je in Derete		Importnespe			
	reate a Design	Respon	ise Name			Re	sponse Units	IV La	wer Limit		🔲 Upper Limit				
	esign Reports	% Rele	ased			• %		8 0.0	<=	Response <=		_			
Data Ent	try / Analysis										, 				
								7							
								\checkmark							
	A	В	С	D	E	F	G	Н	1	J	ĸ	L	М	N	
	Run No.	t-0.00	t - 20.00	t - 40.00	t - 60.00	t - 80.00	t · 100.00	t - 120.00	t - 140.00	t - 160.00	t - 180.00	t - 200.00	t - 220.00	t - 240.00	
	1 1.a	0.00	9.50	13.30	17.20	21.10	25.60	29.50	32.30	35.40	38.80	41.40	44.20	46.50	
	2 I.D	0.00	9.40	13.50	17.60	21.60	25.40	29.60	32.80	35.60	38.30	41.50	44.90	46.50	
	3 1.C	0.00	9.50	13.60	17.00	21.60	25.50	23.40	32.40	35.40	30.30	41.60	44.60	46.00	
	5 1e	0.00	9.20	13.00	17.70	21.50	25.30	29.30	32.50	35.50	38.60	41.50	44.30	46.40	
	6 1.6	0.00	9.60	13.60	17.30	21.70	25.30	29.30	32.40	35.60	38.60	41.60	44.50	46.40	
	7 2.a	0.00	8.20	12.00	18.50	24.60	30.60	36.50	41.80	45.80	50.00	53.70	57.00	60.70	
	8 2.b	0.00	7.60	12.40	18.30	24.70	30.90	36.90	41.40	46.10	50.00	53.60	57.10	60.60	
	9 2.c	0.00	7.90	12.30	18.50	24.80	31.20	36.70	41.60	46.50	50.30	53.50	57.30	60.50	
	10 2.d	0.00	8.10	12.00	18.20	24.80	30.40	36.00	41.40	46.00	50.10	53.20	57.00	60.50	
	11 2.e	0.00	8.40	12.00	18.40	25.30	31.20	36.30	41.40	46.10	49.90	53.80	57.10	60.50	
	12 2.f	0.00	7.80	12.50	18.50	25.20	31.10	36.60	41.40	46.10	50.30	53.20	57.10	60.20	
	13 3.8	0.00	5.70	8.50	9.30	10.20	12.70	14.60	15.60	17.40	18.90	21.60	23.40	25.10	
	14 3.0	0.00	5.00	8.70	9.00	10.30	12.00	14.30	15.20	17.10	18.00	21.70	23.60	25.00	
	16 3d	0.00	5.00	8.60	9.30	10.20	12.00	14.10	15.30	17.00	18.60	21.30	23.30	24.90	
	17 3.e	0.00	6.00	8.40	9.30	10.70	12.40	14.20	15.40	17.10	18.70	22.00	23.40	25.00	
	18 3.f	0.00	6.00	8.50	9.70	10.40	12.50	14.30	15.40	17.50	18.70	21.90	23.10	25.50	
	19 4.a	0.00	7.50	11.60	16.30	20.80	26.40	30.70	34.50	38.00	40.90	44.60	47.40	50.40	
	20 4.b	0.00	7.10	11.40	16.00	21.30	25.90	30.70	34.10	38.00	41.10	44.50	47.70	50.20	
	21 4.c	0.00	7.50	11.10	16.50	21.00	26.20	30.20	34.70	38.30	41.50	44.70	47.20	50.00	
	22 4.d	0.00	7.60	11.70	15.90	21.30	26.10	30.40	34.40	38.20	40.60	44.30	47.50	50.00	
	23 4.e	0.00	7.60	11.30	15.90	21.00	25.90	30.40	34.60	38.20	41.30	44.40	47.60	50.00	
	24 4.1	0.00	7.10	11.30	16.00	21.20	26.10	30.60	34.70	37.90	41.20	44.50	47.60	50.00	
	26 5h	0.00	6.80	10.80	16.40	21.50	26.60	30.90	35.50	38.90	42.40	46.20	43.70	51.50	
	27 5.c	0.00	6.70	10.80	16.40	21.30	26.40	31.00	35.30	39.10	42.20	46.70	49.40	51.90	
	28 5.d	0.00	6.80	10.90	16.70	21.70	26.60	31.00	35.60	39.20	42.70	46.30	49.70	52.30	

Software automatically:

- handles test repeat data
- computes average profiles
- compute f1 & f2 curve fit metrics
- computes sensitive
 Weibull curve fit metrics
- computes additional profile response metrics
- Maps all computed responses to the experimental design for analysis

Response Data Reductions – Time Series (Disso) Data

	Run No.	Atomizing Air Pressure	Pattern Air Pressure	Spray Rate	Gun Distance	Tablet Hardness - Mean (TD1)	Tablet Hardness - %RSD (TD1)	API - % Released - f1	API - % Released - f2
1	1	30	55	82.5	7	75.18	1.47	4.34	77.81
2	2	30	27.5	82.5	10	75.07	0.61	22.12	48.22
3	3	50	0	125	10	77.15	1.01	43.07	34.01
4	4	10	0	40	10	76.23	1.53	6.68	71.35
5	5	10	55	125	10	75.65	0.80	9.43	64.77
6	6	10	55	40	4	75.76	0.71	34.35	38.90
7	7	30	27.5	82.5	4	74.24	1.44	22.50	47.91
8	8	30	0	82.5	7	75.91	1.82	4.47	77.43
9	9	50	55	40	10	74.63	1.66	8.02	68.57
10	10	50	0	40	4	75.52	1.07	3.25	83.71
11	11	30	27.5	82.5	7	74.52	1.29	9.56	64.14
12	12	10	55	40	10	74.62	0.97	1.49	94.63
13	13	10	0	125	4	74.38	0.76	14.47	56.86
14	14	50	55	40	4	75.89	1.71	14.61	56.70
15	15	10	0	40	4	75.43	2.35	13.35	58.25
16	16	10	0	125	10	77.25	1.54	28.74	43.14
17	17	50	55	125	10	75.54	0.89	28.92	43.02
18	18	50	27.5	82.5	7	74.68	1.34	8.82	65.99
19	19	50	0	40	10	76.06	1.42	20.05	50.01
20	20	30	27.5	82.5	7	74.77	1.61	8.82	65.99
21	21	10	55	125	4	74.76	0.91	36.56	37.62
22	22	50	55	125	4	74.81	1.52	13.37	58.29
23	23	10	0	40	4	75.43	0.77	11.75	60.52
24	24	10	27.5	82.5	7	74.68	1.02	9.43	64.46
25	25	30	27.5	82.5	7	74.70	0.93	9.30	64.78
26	26	30	27.5	40	7	74.70	1.15	5.17	75.79
27	27	10	55	40	4	75.94	1.52	34.67	38.73
28	28	50	0	125	4	74.39	1.69	3.64	82.18
29	29	50	0	40	4	75.46	1.43	3.45	82.83
30	30	30	27.5	125	7	74.59	1.58	14.15	57.25
							· · · · · · · · · · · · · · · · · · ·		

Analysis Wizard. Automated Mode

Global Preferences	All at Once Analysis
Design Wizard Mode	Select Responses for Analysis Place a check in the checkbox for each response that you want analyzed in the Automated analysis mode.
O User Interactive Analysis Wizard Mode	 ✓ Tablet Hardness - Mean (TD1) ✓ Tablet Hardness - %RSD (TD1) ✓ API - % Released -f1 (TD2) ✓ API - % Released -f2 (TD2)
	Select All Select None OK Cancel

One Click:

Software automatically creates a predicitve and diagnostic equation (model) for each response that characterizes the effects of the study variables on the response.

Numerical Answer Search – Best Overall Conditions

Execute Search - Response Goals	Set goals and Acceptable Performance Limits for each Response	
Report Name Numerical Search 2	Model F ction Error C.I. for R rt: ± 2 Sigma	
Response Name	Goal Lower Bound Upper Bound Rank	
Tablet Hardness - Mean (TD1)	Target v 74.00 76.00 1 v	
▼ Tablet Hardness - %RSD (TD1)	Minimize 0.00 2.00 1	
API - % Released - f1 (TD2)	Minimize 0.00 10.00 1	
API - % Released - f2 (TD2)	Maximize 60.00 100.00 1	
Validation Status: Your settings are valid.		
		_
		-
	Modify Search Region Restore Defaults < <back cancel<="" einish="" td=""><td>0</td></back>	0

Numerical Answer – Best Overall Conditions

The software automatically identifies and reports the best overall answer – the level setting combination which meets your defined performance goals for all responses simultaneously.

Graphical Visualization – Best Overall Conditions

The graphics wizards can generate graphical representations which visualize the linear, interaction, and complex effects of the study variables for each critical response.

Graphical Visualization – Best Overall Conditions

Note: different Critical Quality Attributes have different regions of good performance.

X- Axis = Pattern Air Pressure (psi) Y-Axis = Spray Rate (mg/min)

Atomizing Air Pressure = 10 psi Gun-to-Bed Distance = 9 inches

Graphical Visualization – Mean Performance Design Space

Fusion Pro Overlay Graph.

Each color on the graph corresponds to a response for which goals have been defined.

A region shaded with a given color shows the study variable level setting combinations that will NOT meet the goals for the corresponding response.

Note: the un-shaded region corresponds to level setting combinations that meet all response goals.

S-Matrix.

Graphical Visualization – Mean Performance Design Space

Graphical Visualization – Mean Performance Design Space

Robustness Simulation – Expected Variation of CPPs

Maximum E The ± 3 or v variable arr on transfer statisticly r	Expected Variation: value defines the "total" variation in the experiment ound its defined setpoint that is expected to occur r and normal use of the method over time due to andom error.	Setpoint LCL BC = 09.7% -30 Study Variable	Maximum Expected Variation (Control Linit Delta = ±30) UCL Use manifacture's specs for the aspecial Centel Linit value or expetition Centel Linit value or expetition System inuse.	
-Variable S	Settings	Units	Maximum Expected Variation	
	Abariaina Air Danasiura		(± 3 σ Value)	NOTE
	Atomizing Air Pressure	psi	5.000	NOTE - the value
<u>×</u>	Pattern Air Pressure	psi	3.000	defines the maximum
	Spray Rate	in also as	2.000	
Se	lect All Select None Set Defaults			variation for the study factor.

Robustness Simulation – Acceptable Variation Limits in CQAs

Robus	tness Simulator						×		
C _p C _{pm} C _{pk} C _{pkm}	Use C _p when (a) the response has allowable amount of variation, and cases below applies to the response 1. The response goal is Maximiz responses are generally not n lower acceptance limit. 2. The response goal is Minimiz responses are generally not n upper acceptance limit. Note: the Tolerance Limit Delta (:	a defined max (b) one of the se: ze, and the pre- ear an absolute e, and the pre- ear an absolute +) value define	imum two dicted dicted s	Maximu TL -3σ Critical	Redicted Variation		From Mean Result for a Given CQA $\hat{c}_p = \frac{UTL - LTL}{6\hat{\sigma}}$ Maximum Allowable Difference (Distance From Mean) IMPORTANT: Maximum Allowable Difference value defines the maximum tolerance (acceptance) limits on response variation.		
Respons	e Settings	1- 1 - 1		1	1	1 1.			
Enabled	Response	Robustness Index	Tolerance Limit Delta (±)	LSL	USL	Target E	dditional Additional Error Amount		
	Tablet Hardness - Mean (TD1)	Ср	2.000	-			NOTE - the	Тс	olerance Limit Delta
	API - % Released - f1 (TD2)	Ср	5.000						
	API - % Released - f2 (TD2)	Ср	10.000				values define	t	ne maximum allowable ±
							limits on resp	0	nse variation.
	Select All Select None	Set Defa	oults						
The s	settings are valid.					E	ack Finish Cancel		

Final Design and Operating Space – Mean Performance + Robustness

The software automatically visualizes the final robust design space.

Final Design and Operating Space – Mean Performance + Robustness

You can also graphically represent your safe operating ranges within the region, and the software will define verification runs to demonstrate that all performance goals are met.

Fusion Pro – QbD-aligned R&D Software

Case Study 1 – END

Fusion Pro – QbD-aligned R&D Software

Case Study 2 -

Tablet Excipient Formulation & Processing

Case Study 2 – Tablet Excipient Study

The three critical excipient formulation parameters (CPPs) selected for study are entered into the Experiment Setup template shown below.

The one critical excipient process parameter (CPPs) selected for study is also entered into the Experiment Setup template shown below.

No. of Mixture Variables	3 🔻			
Units Mixture Am	iount 100.0	*. 8		
Mixture Variable	State	Lower Bound	Upp	
Excipient 1	Variable 🔻	0.0		
Excipient 2	Variable 🔻	0.0		
Excipient 3	Variable 🔻	0.0		
Process Variable Settings- No. of Process Variables	1 💌			
Name			Units	
Compaction Force				

er Bound 100.0 100.0 100.0

I	Name	Units		Туре	Lower Bound	Upper Bound
	Compaction Force	kN	00	Continuous 💌	10.0	21.0
	State Variable Constant					

Case Study 2 – Tablet Excipient Study

The experiment was undertaken to optimize the excipient formulation and the critical process parameter for two critical tablet quality attributes:

Friability and Dissolution Profile

For the dissolution response, the two critical release goals were:

- 10% Released at t = 10 minutes
- 25% Released at t = 60 minutes.

Automated Experiment Design Generation

S-Matrix

One Click:

Software maps the experimental design to the study factors.

Run No.	Excipient 1	Excipient 2	Excipient 3	Compaction Force
1	0	0	100	15.12
2	50	0	50	15.12
3	100	0	0	20.35
4	0	100	0	9.88
5	0	50	50	20.35
6	16.7	66.7	16.6	17.73
7	0	100	0	15.12
8	100	0	0	15.12
9	0	50	50	9.88
10	0	0	100	9.88
11	50	0	50	20.35
12	0	0	100	20.35
13	50	50	0	15.12
14	100	0	0	9.88
15	66.7	16.7	16.6	12.5
16	16.7	16.7	66.6	17.73
17	0	100	0	9.88
18	50	50	0	20.35
19	0	0	100	20.35
20	33.3	33.3	33.4	15.12
21	0	100	0	20.35
22	66.7	16.7	16.6	17.73
23	0	100	0	20.35
24	33.3	33.3	33.4	15.12
25	50	50	0	9.88
26	16.7	66.7	16.6	12.5
27	0	0	100	9.88
28	50	0	50	9.88
29	16.7	16.7	66.6	12.5

Enter Test Results – Friability Testing

Responses consisting of only one measurement per run (no test repeats) can be entered directly onto the Experiment Design grid.

Respo	nse Name			Response Units	V	Lower Limit	🔲 Upper Limit
Friabil	ity		-	× <u></u> 2		0	<= Response <=
	Run No.	Friability				<u> </u>	Add following to empty cells
1	1	0.953					0 Update
2	2	0.737					
3	3	0.205					
4	4	1.573					
5	5	0.369					
6	6	0.488					
7	7	0.752					
8	8	0.557					
9	9	1.965					
10	10	2.438					
11	11	U.275					
12	12	0.38					
13	13	0.601					
14	14	1.038					
10	10	0.529					
17	17	0.525					
10	19	0.266					
10	19	0.200					
20	20	0.371					
21	21	0.351					
22	22	0.406				-	
5.0							
∎Va	lidation Status: `	Your settings are valid.	_		_		
				Nou	1 [""	04	Canada I. Analy

Create Testing Design – Time Series (Dissolution) Testing

🕼 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae	
<u>File E</u> dit <u>M</u> odule <u>T</u> ools <u>W</u> indow <u>H</u> elp	
🗅 📝 🖻 🖫 🎩 🕌 🔳 🕂 Create Testing Design 🍞 Delete Testing Design Export 📑 Create Response 🚿 Edit Response	🖷 Delete Response 🧯 Import Responses 👫 Response Reductions 🥝
Design of Experiments Response Units Create a Design Segin Reports Data Entry / Analysis Response Units Z Z Z	esponse <=
Create Testing Design	Software automatically
Testing Design Name Testing Design Type Testing Instrument	
Dissolution Testing (TD2) Time Series Fusion AE Demo - Alliance 2695 HPLC	handles:
Reference Standards Replication Scheme Reference Standard Runs 1 Apply Replication Scheme No. of Preparation Repeats No. of Test Repeats per Preparation 1	 Uniform or variable sampling plans
Sampling Rate Uniform Variable Variable No. of Measurement 5 0.0	 Multiple sample preparation repeats
Time Interval Units Minutes 2 10.0 V Start time at 0.0 Update 3 30.0	 Multiple test repeats at each time point
The settings are valid.	 Internal test standard data
Back Finish Cancel	

S-Matrix_®

Create Testing Design – Enter Test Results

📑 Fusion Product Development	: - Training Example 1 - Tab	let Coater Optimization - A	nalysis.smae				-	
<u>F</u> ile <u>E</u> dit <u>M</u> odule <u>T</u> ools <u>W</u> in	ndow <u>H</u> elp							
D 🖻 🖻 🖫 📮 🎒 🔳	🕂 Create Testing Design	- Delete Testing Design	🚅 Export 🖷 C	reate Response 🛽 🕅	Edit Response	🗰 Delete Response	🛓 Import Responses	🕅 Response Reductions 🕜
Design of Experiments • Create a Design • Design Reports Data Entry / Analysis	Response Name % Released		Response Unit		ower Limit <= Re:	sponse <=	nit	<i>.</i>
		_	1					
			A Run No.	t - 10.00	L t-60.00			
		1	1	78.18	99.17			
		2	2	11.18	19.40			
		3	3	8.56	20.87			
		4	4	4.64	24.91			
		5	5	21.56	36.29			
			6	6.33	21.63			
			1/	5.95	25.50			
			0	8.43	20.24			
		10	10	79.07	99.01			
		11	11	11 14	20.10			
		12	12	78.10	99.26			
		13	13	4.84	18.64			
		14	14	8.45	20.51			
		15	15	8.48	17.68			
		16	16	10.70	26.66			
		17	17					
		18	18	5.41	17.70			
		19	19	77.89	99.82			
		20	20	6.79	21.18			
		21	21	8.03	26.06			
		22	22	9.10	19.24			
		23	23	8.12	25.65			
		24	24	6.71	20.97			
		25	25	4.23	18.08			
		26	26	5.14	22.31			
		27	2/	/8.24	98.75			
		28	20	11.14	18.89			
🌄 S-Matrix,)	29	_23	10.07	20.73			

Response Data Reductions – Time Series (Disso) Data

Software automatically:

- handles test repeat data
- computes average profiles
- compute f1 & f2 curve fit metrics
- computes sensitive
 Weibull curve fit metrics
- computes additional profile response metrics
- Maps all computed responses to the experimental design for analysis

Two critical release goals:

S-Matrix_®

- % Released at t = 10 minutes
- % Released at t = 60 minutes.

Analysis Wizard. Automated Mode

Global Preferences	All at Once Analysis
Design Wizard Mode Automated User Interactive Analysis Wizard Mode Automated User Interactive OK Cancel @	Select Responses for Analysis Place a check in the checkbox for each response that you want analyzed in the Automated analysis mode. ✓ Friability ✓ X Released - Y-Mean at X = 10 (TD1) ✓ X Released - Y-Mean at X = 60 (TD1)
	Select All Select None OK Cancel 🚱

One Click:

Software automatically creates a predicitve and diagnostic equation (model) for each response that characterizes the effects of the study variables on the response.

Numerical Answer Search – Best Overall Conditions

Numerical Answer – Best Overall Conditions

The software automatically identifies and reports the best overall answer – the level setting combination which meets your defined performance goals for all responses simultaneously.

Graphical Visualization – Best Overall Conditions

The graphics wizards can generate graphical representations which visualize the linear, interaction, and complex effects of the study variables for each critical response.

Graphical Visualization – Mean Performance Design Space

Fusion Pro Overlay Graph.

Each color on the graph corresponds to a response for which goals have been defined.

A region shaded with a given color shows the study variable level setting combinations that will NOT meet the goals for the corresponding response.

Note: the un-shaded region corresponds to level setting combinations that meet all response goals. **Note: Shaded region** in this graph identifies all excipient formulations which **do NOT meet** performance requirements for % Released at 10 Minutes.

Graphical Visualization – Mean Performance Design Space

Robustness Simulation – Expected Variation of CPPs

Robustness	Simulator	x						
Maximum I The ± 3 σ variable a on transfe statisticly	Expected Variation: value defines the "total" variation in the experiment round its defined setpoint that is expected to occur er and normal use of the method over time due to random error.	Expected Variation	Maximum Expected Variable Maximum Expected Variatio (Control Limit Deta = ±30) UCL UPPORTANT: UPP	n				
Variable	Experiment Variable	Units	Maximum Expected Variatio	on				
V	Mixture Composition Compaction Force	% kN	2.000 1.000	NOTE – Enter the expected variation (±3σ value) around target setpoint for each study variable.				
The setting	elect All Select None Set Defaults		Back Next	Cancel				

Robustness Simulation – Acceptable Variation Limits in CQAs

Rot	oustness Simulator			×					
C _p C _{pm} C _{pk} C _{pkm}	 Use C_p when (a) the response has allowable amount of variation, and cases below applies to the response 1. The response goal is Maximiz responses are generally not n lower acceptance limit. 2. The response goal is Minimiz responses are generally not n upper acceptance limit. Note: the Tolerance Limit Delta (: 	a defined max (b) one of the se: te, and the pre- ear an absolute e, and the pre- ear an absolute t) value define	imum two edicted e s s s	Ufference From Mean Result for a Given CQA $\hat{c}_p = \frac{UTL - LTL}{6\theta}$ Maximum Allowable Difference (Distance From Mean) UTL Maximum Allowable Difference value defines the maximum tolerance (acceptance) limits on response variation. variat					
Respo	onse Settings								
Enabl	ed Response	Robustness Index	Tolerance Limit Delta (±)	Additional Additional Error Amount					
V	Friability	Ср	0.500	NOTE - the Tolerance Limit Delta (± value)					
V	% Released - Y-Mean at X = 10	Ср	2.000	defines the maximum accentable limits on					
	% Released - Y-Mean at X = 60	Ср	2.000	process performance variation.					
Pa Th	Select All Select None e settings are valid.	Set Defa	ults	This can be your Process Specification.					
				Back Finish Cancel					

Final Design and Operating Space – Mean Performance + Robustness

The software automatically visualizes the final robust design space.

Final Design and Operating Space – Mean Performance + Robustness

You can also zoom in and graphically represent your safe operating ranges, and the software will define verification runs to demonstrate that all performance goals are met.

_																
- Reports								- Graph			¥4					
Safe Operating Banges									A1		Fusion	AE Graph				
											3 <u>0</u>					
Show T	ernary Axis Line	25														
							=1									
-Graph Setting	5															
		Lower	Upper	Pointer												
Name		Bound	Bound	Coordinate							Ť					
X1 Excipien	t1 ▼ %	10.00	30.00													
X2 Excipien	3 - 96	40.00	80.00								+					
No excipien		40.00	00.00	·			- 11									
Compaction	Force		1-			20.00					+					
							-1									
-Verification R	in Settinge								40 K		+		0			
	an octanga									\sim		1				
Include Pr	oven Acceptab	le Ranges (PA	Rs)													
Operating Rar	nges Mixt	ure Amount:	100.0 %						<u> </u>	$\mathbf{V} \rightarrow$	\mathcal{N}					
		L	ower	Upper			11			X a	3 25					
Variable		В	ound	Bound			ш			$\overline{7}$	৶৸ৠ৻য়					
Excipient 1			15.00	25.00			ш			\mathcal{A}	እ	\mathbf{N}	N			
Excipient 2			15.00	25.00			ш			ר ש	ÐŒ		. 2			
Excipient 3		55.00	65.00			ш			$-/\Lambda$		\mathbf{V}					
								(/	4) +(E)_	<u>A</u>						
	ins I I			I	Show ventic	ation Run Labeis				1			1			
Point	Run ID	Excipient 1	Excipient 2	Excipient 3	Compaction Force	SUM			50	7	10			an		
A	Safe_Operati	15.00	25.00	60.00	20.00	100.000	ш		50		10			00		
В	Safe_Operati	20.00	25.00	55.00	20.00	100.000			X2					X3		
С	Safe_Operati	25.00	20.00	55.00	20.00	100.000		December Californi								_
D	Safe_Operati	25.00	15.00	60.00	20.00	100.000		- nesponse Settings								
E	Safe_Operati	20.00	15.00	65.00	20.00	100.000					Lower	Upper	Target	Pointer	Contour	
F	Safe_Operati	15.00	20.00	65.00	20.00	100.000		Name		Goal	Bound	Bound	Predictions	Predictions	Label	Co
17	Safe_Operati	20.00	20.00	60.00	20.00	100.000		Friability	V Mara - 10 (TD1)	Target -	0.00	1.00	0.33			Red
								Vo Keleased -	Y-Mean at $X = 10$ (TD1)	Target V	22.50	12.00	9.74			Gree
						- 1 - 1	Timean ack = ou (TDT)	i aiget 🔻	22.30	27.30	24,90			Torer		
								_								•

Fusion Pro – QbD-aligned R&D Software

Case Study 2 – END