Fusion AE – LC Method Validation Module

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA Phone: 707-441-0404 URL: www.smatrix.com

ICH – Q2A

The objective of Method Validation is to provide documented evidence and a high degree of assurance that an analytical method employed for a specific test is suitable for its intended use.

Method Validation is a regulatory requirement as much as a scientific necessity. A well executed method validation effort:

- provides scientific credence for the method. (statistical confidence in the data)
- defines the limit of acceptable performance of the method. (Low and high limits of identificattion and quantitation)

PhRMA's Analytical Technical Group

Recommends a phased approach to analytical method validation in which *early phase validation efforts* are done upstream on a reduced set of validation elements appropriate to the stage of method development.

Early Phase Validation – experiments are structured for internal consumption to support and guide method development.

Final Phase Validation – experiments are structured with the rigor and regulatory compliance overlay required of results that may be exported outside the lab.

Early Phase Specific Experiments (Performance Characterization)

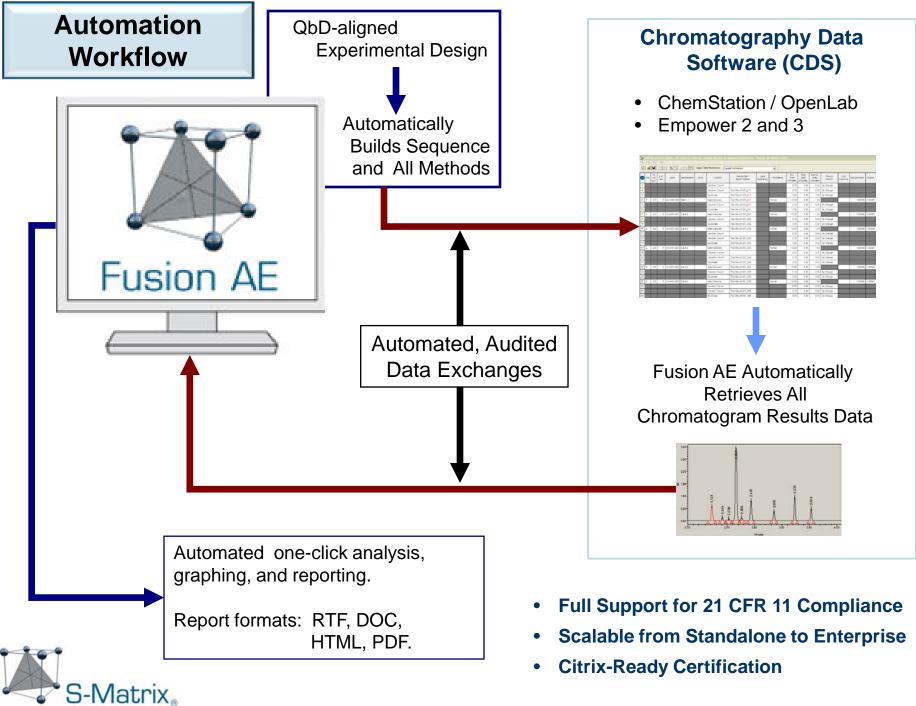
- Specificity
- Filter Validation

Early Phase and Final Phase (FDA / ICH Submittal Quality)

- Accuracy
- Linearity and Range
- LOQ, LOD
- Repeatability* (intra-assay precision)
- Accuracy/Linearity and Range/Repeatability Combined Design (ICH-Q2A – Accuracy, Linearity, and Repeatability can be done together as a single combined experiment).Sample Solution Stability (stability for a given time period under prescribed conditions)
- Intermediate Precision and Reproducibility (USP Ruggedness)
- Robustness

Method Validation Example – Experiment Type Selection

Create New Work File	
Name Project 1	Audit Logging Enabled (Cannot be changed once the file is created)
Fusion AE Agilent 1290	Sample Compound Type Small Molecule Large Molecule
Instrument Type: HPLC Data System: ChemStation Pump Type: Quaternary	Experiment Phase Final Phase Method Validation
	Experiment Type Analytical Capability Specificity Accuracy Linearity and Range Repeatability Accuracy/Linearity and Range/Repeatability Robustness Intermediate Precision and Reproducibility
	OK Cancel 🥝



Fusion LC Method Validation – Automation Workflow

- 1. Complete the Fusion AE template with the relevant information
- 2. Fusion AE creates a Validation Experimental Design
- 3. Fusion AE exports the design to the CDS
 - The CDS runs the validation experiment sequence
- 4. Fusion AE imports and analyzes the CDS results
- 5. Fusion AE creates final reports and graphs

(See next slide)

Linearity Example – Experiment Setup Template

Experiment Setup Sampling Plan						
Include LOQ / LOD						
Global Compound Settings			for		y Res	ce Criteria sult for each
No. of Levels per Compound 5 💌 100% Std. Level Level 3 💌				$\overline{}$		7
Compound Name Compound 1	Units		alidation - Acce	ptance Criteria Accuracy (% Bias <)		0 +.0 .00 .00
		Level 3 100		Linearity (% Bias <)		0 +.0 .00
		Level 4 110		Repeatability (% RSD <=) .inearity (Regression r >=)		1.00 1.00 1.00 1.00
Compound Name	Units	Level Settings V	alidation - Acce	ptance Criteria		
Compound 2	×	Level 1 80		Accuracy (% Bias <)		0 + .0
				Linearity (% Bias <)		0 +.0 .00 .00
			F	Repeatability (% RSD <=)		0 + .0
			V L	.inearity (Regression r >=)	0.999	1.08 1.08

Linearity Example – Standards Setup Options

Standards Strategy Multi-level Bracketing - Overlap Multi-level Bracketing - Overlap No. of Calibration Standard Levels per Bracket No. of Check Standard Levels per Bracket No. of Unknown Injections within Bracket Experiment Design Run No. API CAL - L1.1.a CAL - L2.1.a	I I
Run No. API 1 CAL - L1.1.a 2 CAL - L2.1.a 3 CAL - L3.1.a 4 CAL - L4.1.a 5 CAL - L5.1.a 6 CHK - L1.1.a 5.000 7 7 1.a 1.000 8 1.b 1.000	
9 1.c 1.000 Image: Status and Status an	

ICH Q2B. III. LINEARITY (2)

... If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares... The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares should be submitted. A plot of the data should be included...

Calculation of a regression line by the method of least squares:

- correlation coefficient
- y-intercept
- slope of the regression line
- residual sum of squares
- plot of the data...

Linearity Example – Fusion AE Output Reports

Name: Administrator Company: 8-Matrix Corporation Project Project 1 Date: Cotober 13, 2012 8:51:17 PM PDT (GMT-07:00)

Linearity and Range Report: API - Amount (mg)

Linearity and Rance Data Table

Run Ne.	Target API (mg)	Actual Amount (mg)	API- Amoune
1.4	1.000	1.009	1.091
1.5	1.000	1.01	1.092
14	1.000	1.012	1.109
2.8	2.000	1.895	2.109
2.5	2.000	1.89	2.099
24	2.000	2.004	2.048
2.8	4.000	9.899	4.118
9.b	4.000	4	4.097
94	4.000	3.897	4.099
é.a	5,000	5.005	5.107
4.5	5.000	4.892	5.064
4.6	5.000	5.009	5.065
5a	6.000	9.004	5.89
5.5	6.000	6.009	5.959
5.6	6.000	5.997	6.007

General Repression Statistics Table

Regression Statistic Name	Secretaria Valua	Pass / Fall
r	0.9997	Pass
R Square	0.9999	
ód), R Square	0.9993	
Residual MSE	0.00258	
Standard Error (+)	0.05092	
-+ 95% C1	0.11001	
Intercept% Blas	2.46	
Observations	15	

Acceptance Orberton - Regression In > 0.9990

Regression ANOVA Statistics Table

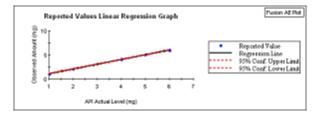
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F-Ratio	P-Value
Regression	49.92199	1	49,62199	19,219,2599	0.0001
Residual	0.09971	12	0.00258		
Total	49.95570	14			

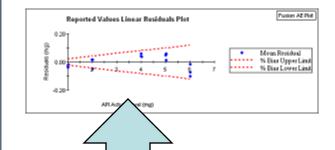
Repression Coefficients Table

Variable Name	Confficient Value	Scandard Dror	Coefficient t Statistic	P-Value	Confidence Link	Confidence Link
narcept	0.12592	0.02979	4.9620	0.0008	0.06925	0.16756
SPI .	0.99921	0.00709	126,6118	0.0001	0.86768	0.99954

Natural Variable Model

API - Amount (pred) = 0.12532 + (0.98321 x API)


Rance


1.003 <= API <= 6.997

Residuals Table

Actual API - Amount (mg)	Predicted API - Amount	Observed API - Amount	Residuals	% Dise of Realitude	S Dias Pass / Fail
1.009	1.11148	1.091	-0.02068	-2.04	Fall
1.01	1.11697	1.092	-0.09697	-9.60	Fall
1.012	1.12099	1.109	-0.01799	-1.71	Pass
1.995	2.06669	2.109	0.01917	0.89	Pass
1.99	2.06161	2.099	0.01708	0.66	Pass
2.004	2.09560	2.048	-0.04768	-2.98	Fall
9.999	4.05621	4.118	0.06179	1.55	Pass
4	4.05817	4.097	0.05669	0.97	Pass
9,997	4.05522	4.099	0.04976	1.10	Pass
5.005	5.04690	5.107	0.00070	1.21	Pass
4.992	5.09952	5.064	0.05048	1.01	Pass
5.009	5.05024	5.065	0.01476	0.29	Pass
9.004	6.02659	5.890	-0.09959	-1.64	Pass
6.009	0.02755	5.959	-0.07155	-1.18	Pass
5.997	6.02165	6.007	-0.01465	-0.24	Pass

Acceptance Orberion: (% Bias) < 2% for each concentration tested.

Fusion AE instantly creates formal reports with all required tables and graphs.

ICH Q2B:

For chromatographic procedures, representative chromatograms should be used to demonstrate specificity, and individual components should be appropriately labeled.

If DL is determined based on visual evaluation or based on signal-to-noise ratio, the presentation of the relevant chromatograms is considered acceptable for justification.

mage Handler		
Browse Delete	1	Denet Assimum
Imported Images Linearity Chromatogram - 100% Label Claim		Report Assignments
Linearity Unromatogram - 100% Label Claim		All Reports and Graphs
		🗔 Experiment Design
		Instrument Report
	٨	🗖 Experiment Design
	V	🗖 Experiment Setup
	<u> </u>	🗖 Data Analysis
		🗖 API - Amount
		Accuracy Report
		Linearity and Range Report
		Repeatability Report
Image Title Linearity Chromatogram - 100% Label Clai		Limit of Detection Report
Run Label None Selected 🗨		Limit of Quantitation Report
,	1	
10		
19		
200		
15 S S S		
8000 000 000 000 000 000 000 000 000 00		
- Peak Peak Pe Pe Pe		
- Peak		
*** <u>- 広告 たかく おと 大告 大告 大告 大告</u> 500 550 150 150 250 250 350 450 450 550 551 40		OK Apply Cancel 🔮
linus	ļ	

Reports can be augmented with images of relevant chromatograms.

Method Validation – Linearity Example

Name: Administrator Company: 3-Matrix Corporation Project: Project 1 Date: June 23, 2013 633:46 PM PDT (GMT-07:00)

Linearity and Range Report: API - Amount (mg)

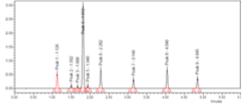
Repression ANOVA Statistics Table

Source of Variation		Degrees of Freedom	Mean Square	F-Rado	P-Value
Regression	49.92199	1	49.92199	18,219,2586	0.0001
Residual	0.09971	19	0.00258		
Total	48,85570	14			

Repression Coefficients Table

	Coefficient		Confficient		Confidence	Upper 95% Confidence Link
Intercept	0.12532	0.02979	4.9620	0.0000	0.06925	0.16756
4PI	0.99921	0.00709	128,6118	0.0001	0.96769	0.99954

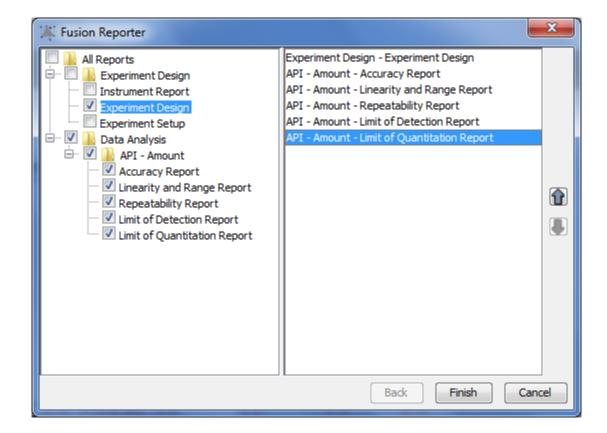
Natural Variable Model


API - Amount (pred) = 0.12532 + (0.98321 x API)

Renos

1.003 <= API <= 6.997

Linearity Chromatogram - 100% Label Claim


Reports can be augmented with images of relevant chromatograms.

Linearity Example – Fusion AE Compiled Report Generator

Reports meet all output format requirements:

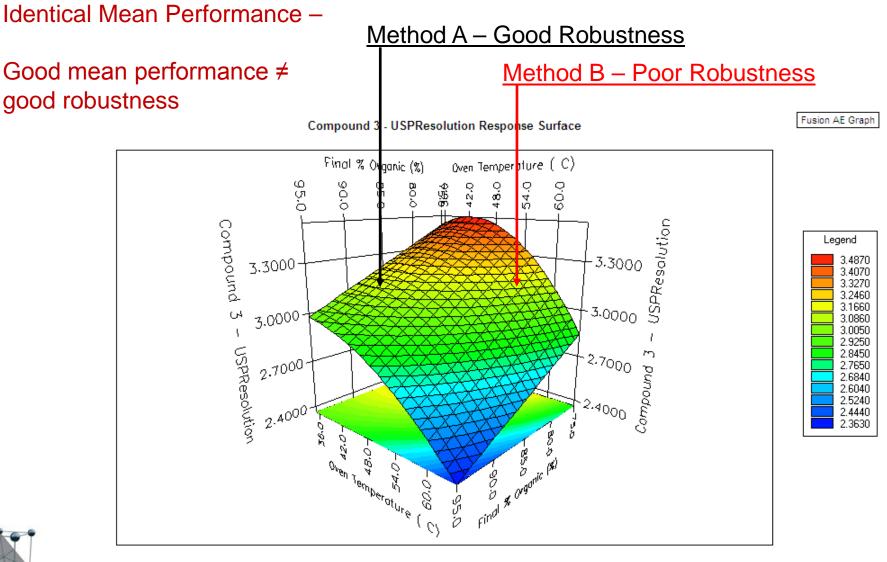
> .TXT .RTF .DOC .PDF .HTML .XML

ICH Q2A / Q2B:

The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, **but deliberate** variations in method parameters and provides an indication of its reliability during normal usage.

In the case of liquid chromatography, examples of typical variations are:

- Influence of variations of pH in a mobile phase
- Influence of variations in mobile phase composition
- Different columns (different lots and/or suppliers)
- Temperature
- Flow rate


Note – the text "*but deliberate*" refers to the deliberate perturbation of critical instrument parameters about their method setpoints done as part of a Validation-Robustness experiment.

Mean Performance Versus Robustness

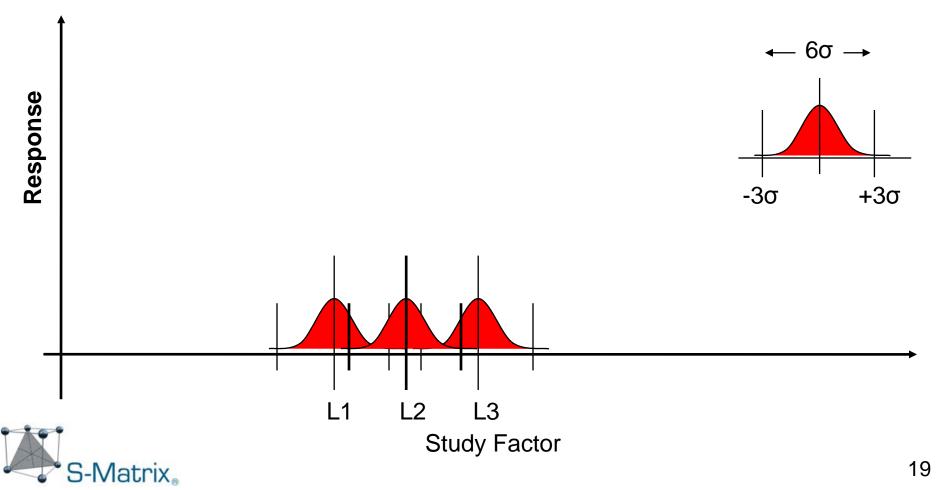
Methods A and B -

S-Matrix.

- I. Potential Sources of Risk in Current Practice
 - 1. Experimental ranges a "Signal/Noise" source of risk
 - 2. Experimental design selection an information content source of risk
 - **3.** Performance requirements a performance variation source of risk

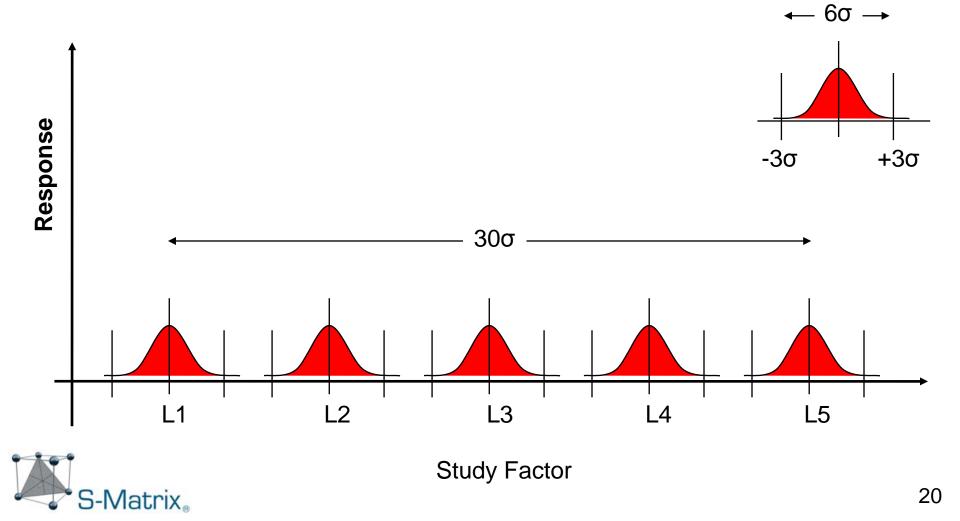
II. QbD-aligned strategy for validating method robustness

- 1. Define valid study ranges for critical instrument parameters (CPPs)
- 2. Select the right experimental design
- **3.** Specify risk-based method performance requirements (CQAs)


- I. Potential Sources of Risk in Current Practice
 - 1. Experimental ranges a "Signal/Noise" source of risk
- II. QbD-aligned strategy for validating method robustness
 - 1. Define valid study ranges for critical instrument parameters (CPPs)

Small Range – Poor Effects Estimation

Traditional Range is Within Setpoint Error Range. The most likely result is that the study factor effects will be UNDERESTIMATED.


The Result – methods which are NOT robust will pass the robustness test.

Best Practice – Large Ranges = High Signal/Noise

General Guideline: Minimum Study Range for 5 Level Designs Should be 30σ

 $(5 \times 6\sigma \text{ interval width})$

- I. Potential Sources of Risk in Current Practice
 - 2. Experimental design selection an information content source of risk
- II. QbD-aligned strategy for validating method robustness
 - 2. Select the right experimental design

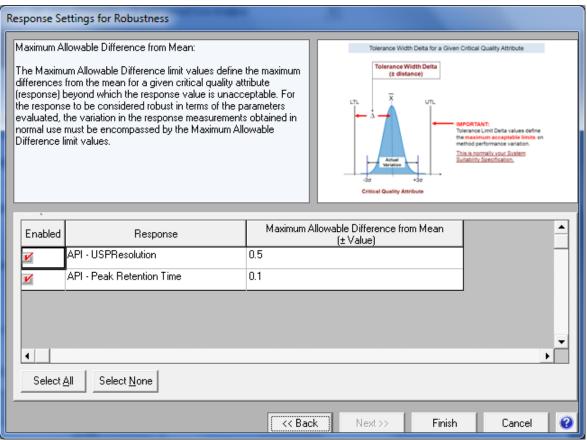
- II. QbD-aligned strategy for validating method robustness
 - Fusion AE automatically selects the right experimental design for the included instrument parameters
 - Fusion AE design is efficient and automated

Four variable Robustness Study – Efficiency Comparison

Full Factorial 3-Level Design = 81 Runs

Fusion AE Optimal^{*} Design = 22 Runs

 Optimal designs can support studies with non-numeric factors (e.g. different columns) and factors that are not completely independent (e.g. mobile phase blends).



- I. Potential Sources of Risk in Current Practice
 - **3.** Performance requirements a performance variation source of risk
- II. QbD-aligned strategy for validating method robustness
 - **3.** Specify risk-based method performance requirements (CQAs)

Method Robustness

Fusion AE lets you specify the Method's Required Performance Limits for Robustness Testing

Demonstration Example – Experiment Type Selection

Create New Work File	
Project Name Project 1	Audit Logging Enabled (Cannot be changed once the file is created)
Fusion AE Agilent 1290	Sample Compound Type Small Molecule C Large Molecule
Instrument Type: HPLC Data System: ChemStation Pump Type: Quaternary	Experiment Phase Final Phase Method Validation
	Experiment Type Analytical Capability Specificity Accuracy Linearity and Range Repeatability Accuracy/Linearity and Range/Repeatability Accuracy/Linearity and Range/Repeatability Accuracy/Li
	OK Cancel 🥝

Comparative Study Ranges Around Method Setpoints

Factor	Method	Traditional	QbD-aligned
	Nominal	Range*	Range
Pump Flow Rate (mL/min)	1.0	±0.025	±0.125
% Strong Solvent (%)	80.0	±2.0	±5.0
Temperature (°C)	35.0	±2.0	±10.0
pH (*)	5.5	±0.15	±0.5

* – worst-case scenario considered.

Experiment Setup Template

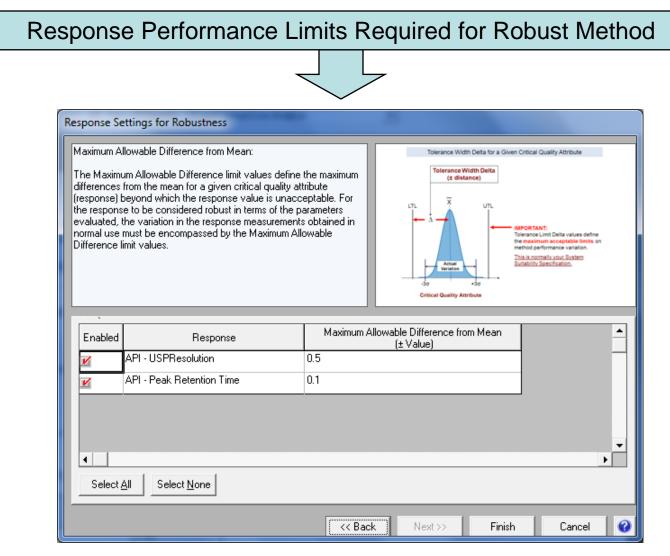
Experiment Setup Sampling Plan	1				
Method Type Gradient 💌					
Available Variables	Included Variables		Unavailable Variables		
Sample Concentration Buffer Strength Buffer Type Additive Column Type	Pump Flow Rate Gradient Slope Injection Volume Oven Temperature Wavelength		Gradient Curve		
Name	Units	Туре	Lower Bound	Upper Bound	
Pump Flow Rate	mL/min	Tool 100 Continuous	•	0.475	0.525
State © Variable © Constant					
Name	Units	Туре	Amount		
Injection Volume	μL	🔣 沈 Discrete Numeric		2.0	
State C Variable C Constant					
Solvent Settings			Available Reservoirs		
No. of Strong Solvents: 1	No. of Weak Solvents: 1 C OK to Blend Weak Solvents Solvent Type Reservoir Strong (Organic) B1 Weak (Aqueous) A1	Mobile Phase Precision 🔝 沈	A2 (1) A2 (1) A1 (2) A1		
Aqueous Buffer	Wesk (Aqueous) A1				

QbD-aligned Study Ranges

Fusion AE Optimization Design Formatted for Export to the CDS

	Run No.	Pump Flow Rate	Initial % Organic	Oven Temperature	pН
1	Condition Column - 1	0.5	65	40	6.5
2	1	0.375	65	40	6.5
3	2	0.625	55	40	6.5
4	3	0.375	65	40	6.5
5	4	0.625	55	40	6.5
6	Condition Column - 2	0.5	65	40	7
7	5	0.625	65	40	7
8	6	0.375	55	40	7
9	Condition Column - 3	0.5	55	40	7.5
10	7	0.5	55	40	7.5
11	8	0.375	65	40	7.5
12	9	0.625	60	40	7.5
13	Condition Column - 4	0.5	57.5	45	6.5
14	10	0.438	57.5	45	6.5
15	Condition Column - 5	0.5	57.5	45	7.5
16	11	0.438	57.5	45	7.5
17	Condition Column - 6	0.5	60	50	6.5
18	12	0.625	60	50	6.5
19	Condition Column - 7	0.5	60	50	7
20	13	0.5	60	50	7
21	14	0.5	60	50	7
22	Condition Column - 8	0.5	65	50	7.5
23	15	0.5	65	50	7.5
24	16	0.625	55	50	7.5
25	Condition Column - 9	0.5	57.5	55	6.5
26	17	0.563	57.5	55	6.5
27	18	0.438	62.5	55	6.5
28	19	0.375	55	60	6.5
29	20	0.625	65	60	6.5
30	Condition Column - 10	0.5	55	60	7
31	21	0.625	55	60	7
32	22	0.375	65	60	7
33	23	0.375	65	60	7
34	Condition Column - 11	0.5	55	60	7.5
35	24	0.375	55	60	7.5
36	25	0.5	60	60	7.5
37	26	0.625	65	60	7.5
38	Condition Column - 12	0.5	65	60	7.5

QbD-aligned Study Ranges


eak Results Data Automatically Imported From the CDS						
	Run No.	Pump Flow Rate	Initial % Organic	Oven Temperature	pН	Impurity B - USPResolution
1 0	Condition Column - 1	0.5	65	40	6.5	
2 1		0.375	65	40	6.5	8.81
3 2	2	0.625	55	40	6.5	0.66
4 3	3	0.375	65	40	6.5	8.81
54	1	0.625	55	40	6.5	0.66
6 C	Condition Column - 2	0.5	65	40	7	
7 5	5	0.625	65	40	7	11.81
8 6		0.375	55	40	7	3.78
	Condition Column - 3	0.5	55	40	7.5	
10 7	7	0.5	55	40	7.5	0.62
11 8	3	0.375	65	40	7.5	8.77
12 9		0.625	60	40	7.5	4.69
1	- Condition Column - 4	0.5	57.5	45	6.5	1.00
_		0.438	57.5	45	6.5	3.50
	Condition Column - 5	0.5	57.5	45	7.5	0.00
	1	0.438	57.5	45	7.5	3.53
	Condition Column - 6	0.5	60	50	6.5	0.00
	2	0.625	60	50	6.5	4.65
_	Condition Column - 7	0.5	60	50	7	4.05
_	13	0.5	60	50	7	7.76
	4	0.5	60	50	7	7.71
	Condition Column - 8	0.5	65	50	7.5	6.0
	15	0.5	65	50	7.5	5.18
	16	0.625	55	50	7.5	4.05
	Condition Column - 9	0.825	57.5	55	6.5	4.03
_	7	0.563	57.5	55	6.5	5.18
	17	0.383	62.5	55	6.5	3.99
					6.5	
_	19 20	0.375	55	60	6.5	7.47
			65			1.45
	Condition Column - 10	0.5	55	60	7	10.53
	21	0.625	55	60	7	10.57
	22	0.375	65	60	7	4.59
	23	0.375	65	60	7	4.62
	Condition Column - 11	0.5	55	60	7.5	
	24	0.375	55	60	7.5	7.40
	25	0.5	60	60	7.5	4.49
	26	0.625	65	60	7.5	1.42
38 C	Condition Column - 12	0.5	65	60	7.5	

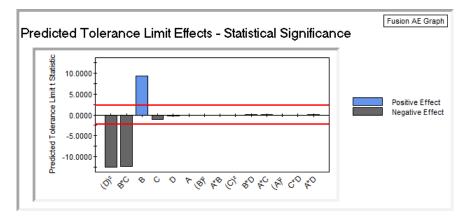
QbD-aligned Study Ranges

Demonstration Study – QbD-aligned Study Ranges

Fusion AE Statistical Significance Testing – Model Coefficients

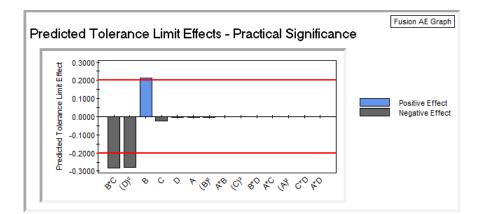
Robustness Report: Impurity B - USPResolution (*)

Coded Variable Name Key


Coded Variable Name	Actual Variable Name
A	Pump Flow Rate
В	Initial % Organic
С	Oven Temperature
D	рН

Variable Effects Table - Statistical Significance

Model Term Name	Robustness Testing Level (Coded)	Coefficient Value	Predicted Tolerance Limit Effect	Predicted Tolerance Limit Standard Error	Predicted Tolerance Limit t statistic	Pass/Fail	
B*C	0.0800	-3.5200	-0.2816	0.0226	-12.4664	Fail	
(D)²	0.0900	-3.1080	-0.2797	0.0224	-12.5133	Fail	
В	0.4000	0.5356	0.2142	0.0228	9.3845	Fail	
С	0.2000	-0.1188	-0.0238	0.0227	-1.0479	Pass	
D	0.3000	-0.0137	-0.0041	0.0224	-0.1837	Pass	
A	0.2000	-0.0169	-0.0034	0.0228	-0.1484	Pass	
(B)²	0.1600	-0.0199	-0.0032	0.0228	-0.1394	Pass	
A*B	0.0800	-0.0193	-0.0015	0.0229	-0.0676	Pass	
(C)²	0.0400	-0.0336	-0.0013	0.0227	-0.0593	Pass	
B*D	0.1200	0.0068	0.0008	0.0224	0.0365	Pass	
A*C	0.0400	0.0070	0.0003	0.0227	0.0123	Pass	
(A)²	0.0400	-0.0054	-0.0002	0.0228	-0.0095	Pass	
C*D	0.0600	-0.0004	<±0.0001	0.0223	-0.0011	Pass	
A*D	0.0600	0.0001	<±0.0001	0.0223	0.0003	Pass	


Maximum Allowable Value: |Predicted Tolerance Limit t statistic| < 2.2010 for each variable studied.

Fusion AE Practical Significance Testing – Effects Magnitude

Variable	Effects	Table - P	Practical	Significance
				-

Term	Robustness Testing Level (Coded)	Coefficient Value	Predicted Tolerance Limit Effect	Pass/Fail
B*C	0.0800	-3.5200	-0.2816	Fail
(D)²	0.0900	-3.1080	-0.2797	Fail
В	0.4000	0.5356	0.2142	Fail
С	0.2000	-0.1188	-0.0238	Pass
D	0.3000	-0.0137	-0.0041	Pass
А	0.2000	-0.0169	-0.0034	Pass
(B)²	0.1600	-0.0199	-0.0032	Pass
A*B	0.0800	-0.0193	-0.0015	Pass
(C) ²	0.0400	-0.0336	-0.0013	Pass
B*D	0.1200	0.0068	0.0008	Pass
A*C	0.0400	0.0070	0.0003	Pass
(A)²	0.0400	-0.0054	-0.0002	Pass
C*D	0.0600	-0.0004	<±0.0001	Pass
A*D	0.0600	0.0001	<±0.0001	Pass

Maximum Allowable Difference from Mean: |Predicted Tolerance Limit Effect| < 0.2 for each variable studied.

- I. Potential Sources of Risk in Current Practice
 - 1. Experimental ranges a "Signal/Noise" source of risk
 - 2. Experimental design selection an information content source of risk
 - **3.** Performance requirements a performance variation source of risk
- II. QbD-aligned strategy for validating method robustness
 - 1. Define valid study ranges for critical instrument parameters (CPPs)
 - 2. Select the right experimental design
 - **3.** Specify risk-based method performance requirements (CQAs)

Full automation – Phased Method Validation.

Early Phase – performance characterization supports development. Final Phase – aligned with FDA and ICH guidances.

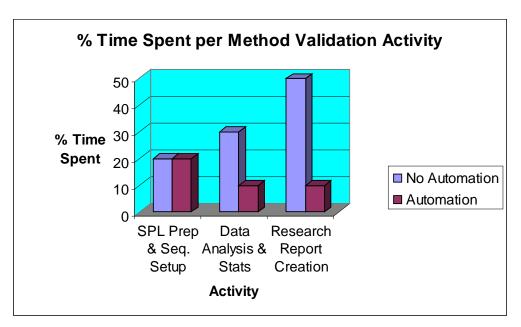
> 21 CFR 11 compliance support toolset -

Including E-records and E-signatures, Audit Logging. Workflow Management with E-review and E-approve Loops.

Easy setup of experiments –

Create standardized workflow templates. Facilitate rigorous practice and defensibility.

- Simple documentation review easy to defend and communicate.
- Standardized reporting reports meet all FDA and ICH guidelines.
- Method Robustness experimental approach is a reliable gatekeeper.



Method Validation – Fusion AE ROI

International Pharma Co. Benchmarking Project

Realized Time Savings = 85%.

Using historical records* and adjusting for project complexity Minimum Expected Time Savings per Project = 60%.

* - on average 2.5 FTE equivalent years spent in method validation support work over 10 year life span of drug.

